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Abstract

At the peak of the tech bubble, only 0.57% of market valuation comes from dividends in

the next year. Taking the ratio of total market value to the value of one-year dividends, we

obtain a valuation-based duration of 175 years. In contrast, at the height of the global �nancial

crisis, more than 2.2% of market value is from dividends in the next year, implying a duration

of 46 years. What drives valuation duration? We �nd that market participants have limited

information about cash �ow beyond one year. Therefore, an increase in valuation duration

is due to a decrease in the discount rate rather than good news about long-term growth.

Accordingly, valuation duration negatively predicts annual market return with out-of-sample

R2 of 15%, robustly outperforming other predictors in the literature. While the price-dividend

ratio re�ects the overall valuation level, our valuation-based measure of duration captures

the slope of the valuation term structure. We show that valuation duration, as a discount

rate proxy, is a critical state variable that augments the price-dividend ratio in spanning the

(latent) state space for stock-market dynamics.
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1 Introduction

We de�ne valuation duration of the stock market as the ratio of total market capitalization to

the price of the dividend in the very next year (the one-year dividend strip price in Binsbergen,

Brandt, and Koijen, 2012). In March 2000, the U.S. stock market has a valuation duration of 175

years, which suggests that at the peak of the dot-com bubble, the U.S. stock market derives 99.4%

of value from dividends beyond the next year. Duration varies signi�cantly over time, with a

monthly standard deviation of 1.6 years in the last three decades. At the market bottom during

the global �nancial crisis, the stock market duration is only 46 years in March 2009 with more

than 2.2% of market value coming from dividends paid within the next year.

What drives the relative valuation of long- vs. short-term dividends? An increase in market

duration represents a steepening of the valuation term structure, with the long-term dividends

commanding a higher valuation relative to dividends in the near term. While duration represents

the slope, the standard price-dividend ratio captures the overall level of market valuation. What

information can we extract from the dynamics of slope and level of the valuation term structure?

We �nd that market duration and the price-dividend ratio span the state space of equity

market. Stock prices are determined by the conditional expectations of future returns and divi-

dends, so a model of the aggregate stock market requires at least two state variables for return and

cash-�ow dynamics (e.g., Lettau and Wachter, 2007; Binsbergen and Koijen, 2010; Kragt, de Jong,

and Driessen, 2020). In other words, the lower bound of the state-space dimension is two. Our

analysis shows that two is also the upper bound. Market duration and the price-dividend ratio

as the two state variables contain su�cient information for forecasting returns and future divi-

dends. Moreover, market duration is the state variable that corresponds closely to the conditional

expected return. We show that this strong connection between market duration and the discount

rate is due to the striking di�erence in cash-�ow predictability at short and long horizons.

Identifying state variables is an important task in asset pricing and macro �nance as it lays

the foundation for various research topics.1 Our �ndings show that beyond the standard price-
1Previous studies on macro dynamics and asset pricing based on consumption, production, behavioral biases,
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dividend ratio, valuation duration is another key state variable for the equity market, and it is

particularly powerful in revealing the discount-rate dynamics. Next, we summarize the key steps

of our analysis and our contributions to the asset pricing literature in three areas, state-space

modeling, return predictability, and cash-�ow expectations.

Our analysis starts with a characterization of the equity-market state space. We explore in-

formation directly from the prices of dividend strips rather than select macro or market variables.

The logarithm of dividend strip prices at di�erent maturities scaled by the realized dividend are

linear functions of (latent) state variables in an exponential-a�ne setup (e.g., Lettau and Wachter,

2007) or through log-linearization (e.g., Campbell and Shiller, 1988; Binsbergen and Koijen, 2010).

Therefore, this set of valuation ratios of dividend strips fully reveals the state variables as long as

the number of dividend strips is at least as large as the number of state variables and the valuation

ratios have linearly independent state-variable coe�cients.

We �nd that two principal components drive the dynamics of valuation ratios of dividends

at di�erent maturities. Importantly, when forecasting market return and dividend growth, two

valuation ratios are su�cient to maximize the predictive power. While di�erent pairs of valuation

ratios possess di�erent predictive power, the pairs with the strongest predictive power perform

just as well as combinations of three or more valuation ratios. Our �ndings suggest that the state

space is two-dimensional. Next, we show that the log market duration (dr ), i.e., the logarithm

of total market value scaled by one-year dividend price, and the log price-dividend ratio (pd)

possess a predictive power for both return and dividend growth that is at least as strong as any

combination of dividend valuation ratios and thus can serve as the pair of state variables.

A striking �nding from our forecasting exercises is that dr alone is su�cient for forecasting

returns. Augmenting dr with pd or other valuation ratios of dividend strips does not improve

the predictive power. In fact, the return predictive power of dr not only subsumes that of pd

and intermediation frictions have motivated a variety of state variables (e.g., Sims, 1980; Cochrane, 1991; Campbell
and Ammer, 1993; Barberis, Shleifer, and Vishny, 1998; Campbell and Cochrane, 1999; Barberis, Huang, and Santos,
2001; Lettau and Ludvigson, 2001; Ang and Piazzesi, 2003; Bansal and Yaron, 2004; Campbell and Vuolteenaho, 2004;
Kaltenbrunner and Lochstoer, 2010; Lettau and Wachter, 2011; Gabaix, 2012; He and Krishnamurthy, 2013; Wachter,
2013; Kelly and Pruitt, 2013; Brunnermeier and Sannikov, 2014; Barberis, Greenwood, Jin, and Shleifer, 2015; Muir,
2017; Campbell, Giglio, Polk, and Turley, 2018; Campbell, P�ueger, and Viceira, 2020; Cieslak and Pang, 2021).
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and other valuation ratios but also surpasses other predictors in the literature, such as those

summarized in Goyal and Welch (2007) and more recent studies. Speci�cally, dr demonstrates

remarkable in-sample and out-of-sample (OOS) return predictability of annual market returns,

reporting substantial R2 of 25% and 15%, respectively. The OOS R2 is in sharp contrast to the

almost zero OOS R2 from pd . Moreover, the predictive power of dr survives the Hodrick (1992)

adjustment for standard errors, the Stambaugh (1999) adjustment for small-sample bias, and tests

for out-of-sample predictive power such as encompassing (ENC) and Clark-West (CW) tests.

These �ndings are critical for understanding both the discount-rate dynamics and the �uc-

tuation of market duration. If the conditional expected return is a univariate function of dr , then

we can rearrange the equation and solve dr as a univariate function of the conditional expected

return, which implies that the variation in duration is fully discount-rate driven. To analyze the

connection between dr and the discount rate, we set up a two-dimensional state space model.

Without loss of generality, the (latent) state variables are the conditional expected return and ex-

pected dividend growth rate that follow AR(1) processes (Lettau and Wachter, 2007; Binsbergen

and Koijen, 2010). dr and pd are bivariate linear functions of state variables, and vice versa.

In our model, a necessary and su�cient condition for the conditional expected return to

be a univariate function of dr (and vice versa) is that the market does not contain information

on cash-�ow growth beyond the very next year. Intuitively, under this condition, the price of

next year’s dividends exhausts all the information about future cash �ows, so dr , which is the

log market value minus the log price of next year’s dividend, teases out cash-�ow information

and only contains information about the discount rate, thus becoming a univariate function of

the conditional expected return. Given that the expected dividend growth rate follows an AR(1)

process, this condition translates into a zero autoregressive coe�cient of the expected dividend

growth rate: All the relevant information about future cash �ows—the current expected growth

rate and the history of realized shocks—is not propagated into the future beyond the next year.2

2Given a two-dimensional state space, adding more lags to the autoregressive processes of expected return and
expected dividend growth is not necessary. If AP(p) or ARMA(p,q) models were required or if other (macroeconomic
or market) variables feed into the dynamics of expected return and expected cash-�ow growth rate, we should have
found the state-space dimension to be higher than two because to span the state space, we must augment the current
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To estimate the autoregressive coe�cient (persistence) of the expected dividend growth

rate, we use analyst forecasts to proxy for the expected cash-�ow growth and estimate two econo-

metric models of belief dynamics that take advantage of, respectively, analysts’ short-term and

long-term forecasts. As an alternative method, we also �t a state-space model to dividend data to

estimate the persistence of expected dividend growth. The message from our �ndings is consis-

tent: Cash-�ow growth expectation lacks persistence. This provides an explanation of the strong

connection between market duration and expected return.

We also show analytically that return prediction errors should comove with the value of

the autoregressive coe�cient of cash-�ow growth expectations. To test this prediction, we con-

duct a rolling-window estimation. In each window, we estimate the autoregressive coe�cient of

the expected cash-�ow growth and the forecast error from predicting returns with dr . Both the

in-sample and out-of-sample forecasting errors comove with the value of the autoregressive co-

e�cient, suggesting that when the market contains limited information about cash-�ow growth

beyond one year, the mapping between dr and the expected return strengthens.

In our model, a zero autoregressive coe�cient of the expected cash-�ow growth rate fully

captures the fact that the market contains limited information about cash-�ow growth beyond

the very next year. The emphasis on this autoregressive coe�cient is warranted because the

expected dividend growth rate follows an AR(1) process. While our analysis of the state-space

dimension supports this model speci�cation, we still go beyond our model to characterize market

participants’ cash-�ow expectations. First, we show that dividend and earnings growth within

one year are highly predictable, especially by analysts’ forecasts.3 The R2 is 73% from forecasting

the near year’s earnings growth. In contrast, cash-�ow predictability beyond one year is weak.

For growth from the next one to two years, the in-sample R2 of our best prediction model is only

8%. It declines to 7% for growth between the second and third years.

Our �ndings on the striking di�erence between short- and long-term cash-�ow predictabil-

ity lend support to dr as a discount-rate proxy. Cochrane (2011) points out that the price-dividend

conditional expectations of next-period return and cash �ow growth rate with lagged conditional expectations.
3This can be explained by �rms o�ering forward guidance on near-term performance.
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ratio, pd , may predict future returns if cash �ows are not predictable. We show that short-term

cash �ows are in fact highly predictable but long-term cash �ows are not. This �nding then sug-

gests that the discount-rate proxy should be market duration, dr , which captures the relative

valuation of long- vs. short-term cash �ows and re�ects the slope of the valuation term structure,

rather than pd , which re�ects the overall level of valuation. Consider a market timing strategy

based on the return predictive power of dr . Because dr has a negative predictive coe�cient, the

strategy reduces market exposure when duration increases and increases market exposure when

duration decreases. The strategy delivers a Sharpe ratio of 0.58, achieving an improvement of 55%

over the buy-and-hold strategy (Campbell and Thompson, 2008). It bets against the valuation of

long-term cash �ows rather than the overall level of valuation that is re�ected in pd .

Beyond time-varying discount rate, return predictability typically entertains an alternative

interpretation based on mispricing. The pro�tability of dr-based market timing strategy can be

explained by market participants’ lack of information on long-term growth and the associated

over- or under-valuation of cash �ows at long horizons. Moreover, the market timing strategy

also avoids betting against the valuation of short-term cash �ows that market participants are in-

formed about. When the valuation of long-term cash �ows rises, the resultant increase in market

duration signals exuberance, while when the valuation of long-term cash �ows declines, market

participants may be overly pessimistic about long-term growth. This interpretation is consis-

tent with the emphasis in Bordalo, Gennaioli, La Porta, and Shleifer (forthcoming) on market

participants’ errors in forecasting long-term growth as a key driver of asset prices.

Literature. Asset prices are typically modeled as functions of state variables. One approach to

selecting state variables is through economic theories (e.g., Campbell and Cochrane, 1999, Bansal

and Yaron, 2004). Our paper contributes to the alternative approach of state space modeling

(e.g., Du�ee, 2002; Dai and Singleton, 2003). Using the valuation ratios of dividend strips, we

empirically analyze the dimension of the state space and provide support to the widely adopted

assumption of a two-dimensional state space (e.g., Lettau and Wachter, 2007; Binsbergen and
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Koijen, 2010; Kragt, de Jong, and Driessen, 2020). Moreover, we show that our valuation-based

measure of duration and the commonly used price-dividend ratio map out the state space of stock

market. Our work builds upon the previous research on measuring the prices of dividend strips

(Binsbergen, Brandt, and Koijen, 2012; Binsbergen, Hueskes, Koijen, and Vrugt, 2013; Binsber-

gen and Koijen, 2017; Cejnek and Randl, 2016, 2020; Cejnek, Randl, and Zechner, 2021; Golez

and Jackwerth, 2023; Giglio, Kelly, and Kozak, forthcoming). While this literature emphasizes

characterizing the term structure of equity risk premium, our paper instead focuses on the term

structure of equity valuation ratios and how to use valuation ratios to map out state variables.4

Our approach of extracting state variables from disaggregated valuation ratios is similar

in spirit to that in Kelly and Pruitt (2013) but di�ers in several crucial ways. Kelly and Pruitt

(2013) decompose the stock market into individual stocks and �lter out state variables from the

valuation ratios of individual stocks. We decompose the market by the horizon of aggregate cash

�ows.5 By avoiding idiosyncratic noise in �rm-level valuation ratios, we do not rely on statistical

�ltering to extract state variables. The valuation ratios of dividend strips, our measure of market

duration, and the price-dividend ratio are already combinations of state variables. Since our two

state variables can be measured in real time and directly from market prices, they are less prone

to estimation error and thus o�er a real-time characterization of the state of equity market.

An application of state variables in the �nance literature is to predict asset returns. We con-

tribute to the voluminous literature on return predictability by o�ering a novel predictor based

on a relative valuation of short- and long-term cash �ows (e.g., Fama and French, 1988; Campbell

and Shiller, 1988; Lettau and Ludvigson, 2001; Baker and Wurgler, 2000; Lewellen, 2004; Goyal

and Welch, 2007; Cochrane, 2007; Ang and Bekaert, 2007; Lettau and Van Nieuwerburgh, 2007;
4There is an extensive literature on the term structure of equity risk premium (e.g., Lettau and Wachter, 2007,

2011; Hansen, Heaton, and Li, 2008; Croce, Lettau, and Ludvigson, 2014; Belo, Collin-Dufresne, and Goldstein, 2015;
Ai, Croce, Diercks, and Li, 2018; Backus, Boyarchenko, and Chernov, 2018; Bansal, Miller, Song, and Yaron, 2021;
Gonçalves, 2021a; Gormsen, 2021; Boguth, Carlson, Fisher, and Simutin, 2022).

5There is a large literature on measuring the cash-�ow duration for the aggregate market based on accounting
information (Binsbergen, 2021; Golez and Koudijs, 2023) and for individual stocks based on accounting information
(Dechow, Sloan, and Soliman, 2004; Da, 2009; Chen, 2011; Weber, 2018; Gonçalves, 2021b; Walter and Weber, 2022)
or derivative prices (Gormsen and Lazarus, 2023). Our paper di�ers by constructing a valuation-based measure of
duration rather than a measure of duration based on the term structure of corporate cash �ows.
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Campbell and Thompson, 2008; Kelly and Pruitt, 2013; Rapach, Ringgenberg, and Zhou, 2016;

Martin, 2017; Johnson, 2019; Chen, Da, and Huang, 2022; Kelly, Malamud, and Zhou, forthcom-

ing; Bordalo, Gennaioli, La Porta, and Shleifer, forthcoming). The construction of our predictor

is simple, and it outperforms the other stock-market return predictors across various metrics.

Moreover, we provide an intuitive explanation on the connection between valuation duration

and the conditional expected return based on the term structure of cash-�ow predictability.

We show that short-term cash �ows are highly predictable but long-term cash �ows are

not, and this is key to identifying a discount-rate proxy. Cochrane (2011) suggests that the price-

dividend ratio, pd , predicts future returns and serves as a discount-rate proxy if cash �ows are

not predictable. But our �ndings on the striking di�erence in cash-�ow predictability at short- vs.

long horizons suggest that the proper discount-rate proxy and the state variable driving the con-

ditional expected return should be market duration, dr . Our �ndings on cash �ow predictability

at di�erent horizons contribute to the literature on cash-�ow predictability (Larrain and Yogo,

2008; Binsbergen and Koijen, 2010; Koijen and Van Nieuwerburgh, 2011; Binsbergen, Hueskes,

Koijen, and Vrugt, 2013; Chen, Da, and Zhao, 2013; Jagannathan and Liu, 2018; Pettenuzzo, Sab-

batucci, and Timmermann, 2020; Golez and Koudijs, 2023; Sabbatucci, 2022; Pruitt, 2023)

Characterizing the dynamics of expected cash-�ow growth rate has always been an impor-

tant topic in the asset pricing literature (Bansal and Yaron, 2004; Beeler and Campbell, 2012; Belo,

Collin-Dufresne, and Goldstein, 2015; Collin-Dufresne, Johannes, and Lochstoer, 2016). Recently

a growing body of work focuses on analyzing market participants’ expectation formation. Adam

and Nagel (2022) summarize the latest developments.6 Our �ndings are most related to Bordalo,

Gennaioli, La Porta, and Shleifer (forthcoming), who document that market participants’ errors

in forecasting long-term growth are key to understanding asset-price �uctuations. Also related,

Da and Warachka (2011) �nd that the disparity between long- and short-term earnings expecta-
6There is a fast-growing body of literature on �rm-level cash �ow expectations (La Porta, 1996; Dechow and

Sloan, 1997; Copeland, Dolgo�, and Moel, 2004; Da and Warachka, 2011; Piotroski and So, 2012; Bordalo, Gennaioli,
La Porta, and Shleifer, 2019; Bouchaud, Krüger, Landier, and Thesmar, 2019; Binsbergen, Han, and Lopez-Lira, 2022)
and expectations of aggregate cash-�ow growth (Chen, Da, and Zhao, 2013; De La O and Myers, 2021; Gao and
Martin, 2021; McCarthy and Hillenbrand, 2021; Nagel and Xu, 2022; Charles, Frydman, and Kilic, 2023; Bordalo,
Gennaioli, La Porta, OBrien, and Shleifer, 2023; Schmidt-Engelbertz and Vasudevan, 2023).
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tions drives the cross-sectional di�erence in average stock returns. Our contribution is to show

that, �rst, there exists a striking di�erence in short- vs. long-term cash �ow predictability, and

second, such di�erence guides us towards �nding a discount-rate proxy. Moreover, we show that

the term structure of cash-�ow predictability is tied to the persistence of agents’ cash-�ow expec-

tations. Our �ndings echo the recent studies on the importance of agents’ perceived persistence

of key state variables in explaining belief formation and asset prices (Gabaix, 2019; Wang, 2020).

2 Valuation Ratios and the State Space

We consider a dynamic economy where the information �ltration is driven by a Markov process.

Speci�cally, the state of an economy at time t is summarized by Xt , a K -by-1 vector of state

variables. We assume that Xt evolves as a �rst-order vector autoregression

Xt+1 = ΠXt + �⊤X �t+1, (1)

where �t+1 is a N -by-1 vector of shocks that capture all the news at t +1 and are independent over

time with normal distribution N (0, Σ). Note that since any higher-order vector autoregression

can be written as a �rst-order vector autoregression by expanding the number of state variables,

the AR(1) speci�cation is without loss of generality. The autoregressive coe�cients are given by

Π, a constant K -by-K matrix, and �X is a N -by-K matrix of shock loadings.

The growth rate of dividend from t to t + 1 has a N -by-1 shock-loading vector �D ,

ln(
Dt+1

Dt ) = gt + �⊤D�t+1, (2)

where the time-varying expected dividend growth rate is given by

gt = �⊤Xt + g −
1
2
�⊤DΣ�D . (3)

8



We allow the state-variable loadings, �, to be any K -by-1 vector. If gt does not depend on a state

variable, the corresponding element in � is zero; likewise, if a shock does not a�ect the growth

rate of aggregate dividend, the corresponding element in �D is zero.

No arbitrage implies the existence of a stochastic discount factor

Mt+1 = exp
{
−rf −

1
2
�⊤t Σ�t − �

⊤
t �t+1

}
, (4)

where rf is the one-period risk-free rate and the N -by-1 vector of risk prices, �t , is given by

�t = � + �⊤Xt . (5)

We do not impose any restrictions on the state-variable loadings of the risk prices in �t .

Let Pnt denote the time-t price of the dividend paid at t + n. The no-arbitrage pricing func-

tional gives a recursive equation for the prices of dividend strips: for n ≥ 1,

Pnt = Et [Mt+1Pn−1t+1 ] , (6)

with the boundary condition P 0t = Dt . The log price-dividend ratio of the dividend strip with

maturity n is given by

snt ≡ ln(
Pnt
Dt)

= A (n) + B (n)⊤ Xt , (7)

where A (n) and B (n) are deterministic functions of n given by a system of recursive equations

with initial conditions A (0) = 0, and B (0) = 0 (see equations (33)-(34) and derivation in Appendix

I).

Given K log price-dividend ratios of strips, {snit ∶ ∀i ∈ {1, 2, ..., K}, ni ∈ {1, 2, ..., n, ...}}, with

a full-rank loading matrix, B ({ni}Ki=1) ≡ [B (n1) , B (n2) , ..., B (nK )]
T , the state space is recovered by

Xt = B ({ni}Ki=1)
−1 [sn1t − A (n1) , ..., snKt − A (nK )]⊤ (8)
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When the rank condition fails, these valuation ratios can still recover part of the state space.

Let J (< K ) denote the maximum number of log price-dividend ratios with linearly independent

loadings B (n) and {ni}Ji=1 denote the corresponding set of maturities. We can write (8) as follows

B ({ni}Ji=1) Xt = [sn1t − A (n1) , ..., s
nJ
t − A (nJ )]

⊤ . (9)

The stock market acts as a linear mapping, i.e., B ({ni}Ji=1), that compresses the K -dimensional

state space of Xt into a J -dimensional space generated by the log price-dividend ratios. In sum,

a collection of log price-dividend ratios of dividend strips (partially) span the state space. For

information embedded in the state variables, we analyze these valuation ratios.

Let Pt denote the total stock market capitalization (i.e., the market price of dividends across

all maturities). Following the same method, we solve the log price-dividend ratio of the market

pdt = ln (Pt/Dt) = A + B⊤Xt , (10)

where A and B are constants de�ned in Appendix I. Stock market duration is de�ned as the log

ratio of total market capitalization to the price of dividends paid in the next year.

drt ≡ ln (Pt/P 1t ) = ln (Pt/Dt) − ln (P 1t /Dt) = pdt − s1t

= A − A(1) + (B − B(1))⊤ Xt . (11)

Therefore, just like the valuation ratios of dividend strips, pdt and drt are also driven by

the state variables Xt . By having di�erent coe�cients of Xt , these two variables reveal di�erent

information about the state space. Next, we analyze the dimension of the state space using drt ,

pdt , and the valuation ratios of dividend strips with di�erent maturities. After showing empiri-

cally that the state space is two-dimensional, we argue that pdt and drt , span the state space and

contain su�cient information for forecasting stock market returns and cash-�ow growth.
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3 The Dimension of State Space

3.1 Variable construction and summary statistics

Constructing dividend strip prices. Let Pnt denote the price of the dividend paid in year n.

First, we calculate Pn+t , the price of dividends that are paid after the �rst n years. Under the

risk-neutral measure,

Pn+t = e−nrfERN
t [

+∞

∑
�=1

e−�rfDt+n+�]
= e−nrfERN

t [
ERN
t+n [

+∞

∑
�=1

e−�rfDt+n+�]]
, (12)

where the expectation operator, ERN
t+n [⋅], was inserted under the law of iterated expectations. Note

that the (ex-dividend) stock price at t + n is

St+n = ERN
t+n [

+∞

∑
�=1

e−�rfDt+n+�]
, (13)

so we have

Pn+t = e−nrfERN
t [St+n] . (14)

The �rst component, e−nrf , is ZCBnt , the price of a zero-coupon bond with maturity n. The second

component is the risk-neutral expectation of stock price, i.e., the futures price, F nt (Du�e, 2001).

We construct the price of dividend strips using zero-coupon bond prices and stock index

futures prices. First, we calculate P 1t , the price of the dividend paid in the next year,

P 1t = Pt − P
1+
t , (15)

as the di�erence between the price of all dividends, i.e., the current stock price Pt , and the price of

dividends paid after the next year. Following the same method, we calculate the price of dividends

paid in the next six months, P 0.5 from Pt − P 0.5+t . In our empirical analysis, we use the valuation

ratios of dividend strips with maturity 1 and 0.5, i.e., s1 = ln(P 1/Dt) and s0.5 = ln(P 0.5/Dt), and the
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valuation ratio of dividends paid beyond one year, s1+ = ln(P 1+/Dt). Our analysis in the previous

section shows that these valuation ratios are di�erent linear combinations of state variables.

Data and summary statistics For futures prices, we use S&P 500 index futures, which are the

most actively traded stock futures. We obtain S&P 500 futures prices from Datastream.7 We obtain

the zero-coupon bond prices from the Fama-Bliss database. The return and level of the S&P 500

index are obtained from CRSP. The dividend data is from S&P Global and obtained via the updated

dataset of Goyal and Welch (2007). Our �nal dataset is from January 1988 to December 2019. The

sample starts in 1988 to have high-quality dividend data from S&P Global and, importantly, a

su�ciently liquid futures market without structural changes.8 After the market crash of October

1987, regulators overhauled several trade-clearing protocols.9 Lastly, Fama-French factors at the

monthly frequency are obtained from Ken French’s website.

We construct market duration, drt , as the logarithm of the ratio of S&P 500 market capi-

talization to the price of dividends paid in the next year. The traditional price-dividend ratio is

the logarithm of the ratio of S&P 500 market capitalization to the realized dividend in the last

year. Table 1 reports the summary statistics of drt , the traditional price-dividend ratio pdt , the

valuation ratios (s0.5, s1, and s1+), the monthly return of S&P 500 (r S&Pt+1/12 where in the subscript 1/12

denotes one month or 1/12 of a year), the annual return of S&P 500 (r S&Pt+1 ), and for comparison,

the monthly and annual returns of the Fama-French market portfolio (MKT) (rMKT
t+1/12 and rMKT

t+1 ).

Our sample includes monthly observations until 2019, i.e., before the extreme market �uctuations

during the Covid-19 pandemic. Our baseline analysis focuses on the returns and dividends of the
7We obtain the daily settlement prices for the S&P 500 futures. For return and cash-�ow prediction at the monthly

frequency, we use the settlement price of the last trading day of each month. The maturities of the traded futures
contracts vary over time, so to obtain futures prices with constant maturity, we apply the shape-preserving piecewise
cubic interpolation to complete the futures curve. The results using linear interpolation are similar.

8Wang, Michalski, Jordan, and Moriarty (1994) identify structural changes of liquidity in the S&P 500 futures
market in the pre-1987 period, during the market crash, and in the post-1987 period.

9The stock market crash in October 1987 reveals anomalous trading in the futures market that was primarily
driven by portfolio insurance (Brady Report (1988)). According to the New York Stock Exchange: “In response to
the market breaks in October 1987 and October 1989, the New York Stock Exchange instituted circuit breakers to
reduce volatility and promote investor con�dence. By implementing a pause in trading, investors are given time to
assimilate incoming information and the ability to make informed choices during periods of high market volatility.”
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Table 1 Summary Statistics
This table reports the number of observations, mean, standard deviation, minimum, maximum, quartiles, and
monthly autocorrelation (�) of the main variables in this paper, including our main return predictor, dr (“duration”),
the price-dividend ratio pd of the S&P 500 index, the �ltered series for demeaned expected returns and dividend
growth following Binsbergen and Koijen (2010) �F and gF , the single predictive factor extracted from 100 book-to-
market and size portfolios from Kelly and Pruitt (2013) KP , short-term dividend strip price to dividend ratio (0.5 year
and 1 year) log(P0.5/D) and log(P1/D), long-term dividend strip price to dividend ratio (beyond 1 year) log(P1+/D),
one-month and one-year log returns of the S&P 500 index rS&Pt+1/12 and rS&Pt+1 , one-month and one-year log market
returns from Fama-French market portfolio rMKT

t+1/12 and rMKT
t+1 , and the 1-year dividend growth rate of S&P 500 in-

dex and the Fama-French market portfolio log(Dt+1/Dt ) and log(DMKT
t+1 /DMKT

t ). Our sample is monthly observations
1988:01–2019:12.

obs mean std min 25% 50% 75% max �

drt 384 4.027 0.494 2.952 3.727 4.044 4.208 6.632 0.919
pdt 384 3.883 0.289 3.239 3.656 3.930 4.047 4.524 0.985
�Ft 384 -0.039 0.024 -0.091 -0.051 -0.041 -0.024 0.010 0.991
KPt 384 -0.504 0.073 -0.725 -0.562 -0.482 -0.450 -0.378 0.955
s0.5t ≡ log(P0.5/D) 384 0.095 0.157 -0.568 0.046 0.126 0.187 0.429 0.929
s1t ≡ log(P1/D) 384 0.009 0.041 -0.184 -0.015 0.013 0.034 0.108 0.022
s1+t ≡ log(P1+/D) 384 3.863 0.297 3.204 3.629 3.913 4.030 4.521 0.985
rS&Pt+1/12 384 -0.142 0.280 -2.241 -0.210 -0.098 0.016 0.393 0.766
rS&Pt+1 384 -0.819 0.281 -2.629 -0.883 -0.768 -0.666 -0.280 0.604
rMKT
t+1/12 384 0.009 0.042 -0.187 -0.016 0.014 0.036 0.108 0.051
rMKT
t+1 384 0.096 0.159 -0.554 0.036 0.128 0.194 0.440 0.924
Δdt+1 ≡ log(Dt+1/Dt ) 384 0.059 0.070 -0.237 0.025 0.068 0.112 0.168 0.994
ΔdMKT

t+1 ≡ log(DMKT
t+1 /DMKT

t ) 384 0.058 0.081 -0.207 0.018 0.051 0.107 0.262 0.962
gFt 384 0.019 0.059 -0.233 -0.002 0.031 0.056 0.132 0.939

S&P 500 index because we construct the strip prices using the S&P 500 futures data.10 For ro-

bustness, we also report results using Fama-French market portfolio returns and dividends. Note

that we include �F and KP , the return predictors from Binsbergen and Koijen (2010) and Kelly

and Pruitt (2013), respectively, because these variables are also constructed to extract informa-

tion on state variables. To highlight our contribution, we will compare our analysis with that in

Binsbergen and Koijen (2010) and Kelly and Pruitt (2013).

The mean of stock market duration drt is 4.027, which translates into 56 = exp(4.027) years,

meaning that the total market value is 56 times the valuation of dividends in the next year. drt has

a wide range of variation, with a minimum of 2.952 (i.e., 19 years) in November 1988 right before
10Previous studies of return predictability (e.g., Ang and Bekaert, 2007) also use S&P 500 Index as a market proxy.
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Figure 1 Spectrum and Cross-spectrum of Duration dr and Price-Dividend Ratio pd .
The left panel shows the estimated spectral densities of drt , pdt , and the residuals of drt after projecting on pdt (�prt ).
The integral of spectral density is equal to the variance. The horizontal line starts from zero and ends at � , but is
labeled with the corresponding length of a cycle. The right panel shows the cross-spectral density between drt and
pdt . The integral of cross-spectral density is equal to the covariance.

the 1990-1991 recession and a maximum of 6.632 (i.e., 759 years) near the end of the dot-com

boom (November 2000). drt has a lower monthly autocorrelation (“�”) than pdt .

drt and pdt are correlated but contain distinct information. As shown in the cross-spectrum

in Figure 1, the correlation of 0.87 is mainly from low-frequency movements. Panel A of Figure

1 shows the spectrum of drt , pdt , and �drt (the residual from linearly projecting drt on pdt ). The

area under the spectrum curve is the variance, so the �gure provides a variance decomposition in

the frequency domain. On the horizontal axis, instead of showing the frequencies from zero to � ,

we mark the corresponding length of the cycle for easier interpretation. Once orthogonalized to

pdt , drt ’s residual varies mainly at annual or higher frequencies. Panel B plots the cross-spectrum

of drt and pdt . The integral is the covariance between drt and pdt . The correlation between drt

and pdt is mainly from low frequencies. This indicates that it is the high-frequency variation

in drt that brings information distinct from that revealed by the traditional price-dividend ratio.

This is consistent with the �ndings in Kragt, de Jong, and Driessen (2020) about di�erent state

variables �uctuating at di�erent frequencies. Figure A.1 in the Appendix shows the spectrum

analysis based on daily data with similar results.
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Figure 2 Principal Component Analysis of Valuation Ratios
This �gure reports the PCA results for dr , pd , s0.5t , s1t , and s1+t . Panel A plots the variance explained by each principal
component. Panel B plots the loading of each variable on the �rst two principal components.

As shown in Section 2, drt and pdt are essentially di�erent combinations of state variables.

Our state-space approach is closely related to Binsbergen and Koijen (2010). Binsbergen and

Koijen (2010) use the realized returns and dividends to estimate a latent-state model and �lter

out the conditional expected return, �Ft , and the conditional expected dividend growth rate, gFt .

These �ltered variables are also combinations of state variables. We replicate the analysis of

Binsbergen and Koijen (2010), and throughout our analysis in this paper, we compare our state-

space representation via valuation ratios with the information about state space in �Ft and gFt .

Kelly and Pruitt (2013) also take a state-space approach and use the cross-section of market-to-

book ratios of individual stocks to extract the conditional expected return of the aggregate stock

market. We have also replicated Kelly and Pruitt (2013) and include KPt for comparison.

3.2 Analyzing the dimension of the state space

We are interested in determining the dimension of the state space. Traditionally, a variety of

macroeconomic and �nancial-market variables have been incorporated into di�erent analytical
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frameworks as the state variables that generate the relevant information for asset pricing (e.g.,

Cieslak and Pang, 2021). For example, the market price-dividend ratio, pdt , has been commonly

selected as a state variable (Muir, 2017). However, there has been limited evidence on the dimen-

sion of the state space, i.e., how many state variables are needed in an asset pricing framework.

Among the theoretical studies, such as Lettau and Wachter (2007) and Binsbergen and Koijen

(2010), a common assumption is that two state variables are su�cient for characterizing the stock

market dynamics and, in particular, for predicting returns and cash-�ow growth. In these models,

these two state variables are often directly speci�ed as the conditional expectation of return and

the conditional expectation of cash-�ow growth.

According to our analysis in Section 2, one way to determine the dimension of the state

space is to analyze the collection of valuation ratios, such as those of dividend strips, pd , and

our measure of market duration dr . In Panel A of Figure 2, we report the results from principal

component analysis (PCA) of dr , pd , and valuation ratios of dividend strips with maturities of

six months, one year, and of dividends paid beyond one year. The �rst two components account

for 96.3% of total variance. In correspondence with our theoretical analysis in Section 2, we show

in Panel B of Figure 2 that these valuation ratios have di�erent loadings on the two principal

components, labeled as Dim1 (dimension 1) and Dim2 (dimension 2).

The results in Figure 2 indicate that the state space, mapped out by the valuation ratios, is

likely to be two-dimensional, and that we may pick any two valuation ratios, for example, the

pair of pd and dr , to span the state space. However, as pointed out by Kelly and Pruitt (2015),

a shortcoming of PCA analysis is that the information embedded in the principal components

may not be the information most relevant for objects of interest, which, in asset pricing studies,

are cash-�ow and return dynamics. Therefore, we also take a predictive regression approach to

analyze the state space. The expected return and expected dividend growth rate are driven by the

state variables. By projecting future returns and dividend growth rates on the valuation ratios,

we are able to evaluate how many valuation ratios are needed to achieve the highest predictive

power and thereby analyze the dimension of the underlying state space based on information
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Figure 3 R2 from Dividend Growth Predictive Regressions with Bootstrapped Con�dence Interval.
This �gure reports R2 from one-year S&P 500 Index dividend growth predictive regressions with bootstrapped con-
�dence interval. The predictors include our main predictor – a linear combination of ‘duration’ and 1-year dividend
strip price to dividend ratio dr + s1, the price-dividend ratio pd , short-term (0.5- and 1-year) dividend strip price
to dividend ratio (pd0.5 and pd1), long-term (beyond 1-year) dividend strip price to dividend ratio (pd1+), the �l-
tered series for demeaned dividend growth following Binsbergen and Koijen (2010) gF , the single predictive factor
extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP , and all combinations of pd ,
pd0.5, pd1 and pd1+. Each bar corresponds to one separate predictive regression. The range of the bar represents
95% con�dence intervals of the predictive R2 obtained using the bootstrap method.

relevant to cash-�ow and return dynamics.

In Figure 3, we report the R2 of predicting the annual dividend growth of the S&P 500 index

in the next year with di�erent combinations of valuation ratios. We report the detailed regression

results in Table A.1 in the Appendix. Our predictive regression is run on monthly observations.

In the �rst speci�cation, the predictors include dr and pd , which achieve the highest adjusted

R2. In the next speci�cation, for comparison, we show the forecasting performance of gF , the

predictor from Binsbergen and Koijen (2010) who develop a latent state model and �lter out the

conditional expectation of growth rate gF .
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In the third speci�cation in Figure 3, we include our market duration measure dr alone.

Interestingly, dr shows limited return predictive power in comparison with the combination of

dr and pd . This is surprising as one would expect that when dr increases, i.e., the stock mar-

ket assigns a higher valuation to long-run dividends than the short-run dividends, the expected

growth rate of dividends should rise accordingly. In the fourth speci�cation, we show that the

traditional price-dividend ratio also has limited cash-�ow predictive power.

The weak standalone predictive power of dr and pd stands in contrast with the strong

predictive power of dr and pd combined in the �rst speci�cation. This again indicates that to

fully capture the information embedded in the state variables, two valuation ratios are needed.

In the subsequent speci�cations, we show that di�erent pairs of valuation ratios exhibit di�erent

cash-�ow predictive power. This shows the importance of taking a predictive regression approach

in determining the dimension of the state space rather than simply relying on PCA of valuation

ratios. Any given pair of valuation ratios fully spans the two principal components, as indicated

in the linearly independent principal-component loadings of di�erent valuation ratios in Panel

B of Figure 2. However, di�erent pairs of valuation ratios may still contain di�erent information

about return and cash-�ow dynamics.

In the last �ve speci�cations in Figure 3, we show that three or four valuation ratios do not

outperform two valuation ratios in forecasting dividend growth. The adjusted R2 we report is

in-sample R2, which does not re�ect poor out-of-sample performance due to potential over�tting

from adding more predictors; in other words, when competing with dr and pd , the three or four

valuation ratios do not have a mechanical disadvantage due to our choice of performance metric.

Overall, our results indicate that two valuation ratios (in particular, the combination of dr and

pd) are the necessary minimum and su�cient for forecasting dividend growth.

Next, we examine the dimension of the state space by forecasting returns. In Figure 4, we

report the R2 of predicting the annual return of S&P 500 with di�erent combinations of price-

dividend ratios. Our predictive regression is run monthly. We report the detailed regression

results in Table A.2 in the Appendix. The conclusion is similar to that in cash-�ow prediction.
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Figure 4 R2 from Return Predictive Regressions with Bootstrapped Con�dence Interval.
This �gure reports R2 from one-year S&P 500 Index return predictive regressions with bootstrapped con�dence
interval. The predictors include our main predictor ‘duration’ dr , the price-dividend ratio pd , short-term (0.5- and 1-
year) dividend strip price to dividend ratio (pd0.5 and pd1), long-term (beyond 1-year) dividend strip price to dividend
ratio (pd1+), the �ltered series for demeaned expected returns following Binsbergen and Koijen (2010) �F , the single
predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP , and all
combinations of pd , pd0.5, pd1 and pd1+. Each bar corresponds to one separate predictive regression. The range of
the bar represents 95% con�dence intervals of the predictive R2 obtained using the bootstrap method.

Having three or more price-dividend ratios does not improve predictability relative to the best

performance of combinations of two price-dividend ratios. In particular, combining dr and pd

achieves the best forecasting performance. These results again suggest that the state space is

two-dimensional, and to capture the information embedded in state variables, we need dr and

pd for the purposes of analyzing both return and cash-�ow dynamics.

Interestingly, the predictive power of dr alone is comparable to that of two or more val-

uation ratios. Moreover, in the second, third, and fourth speci�cations in Figure 4, we �nd that

�F , the return predictor in Binsbergen and Koijen (2010), KP , the return predictor in Kelly and

Pruitt (2013), and the traditional price-dividend ratio all underperform dr in our sample period.
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Overall, our results suggest a close connection between drt and the conditional expected return.

This �nding is critical for understanding what drives the variation of market duration and, vice

versa, what drives the expected return. We will explore this topic in the next section.

Before we move on to Section 4, we brie�y discuss the rich information content of the pair

dr and pd beyond forecasting return and cash-�ow growth. In Table A.3 in the Appendix, we

report the R2 from forecasting a variety of macroeconomic and �nancial-market variables with

dr and pd , only dr , only pd , and for illustration purposes, dr in combination with s1 (the log

price-dividend ratio of one-year dividend strip), and only s1. The pair dr and pd demonstrate the

strongest and most consistent predictive power when forecasting variables related to �nancial

intermediaries’ balance-sheet capacity (with the R2 ranging from 30% to 40%). When forecasting

macroeconomic variables related to business-cycle dynamics, dr and pd have an R2 consistently

above 20%. Moreover, the R2 from forecasting sentiment proxies is consistently above 10%. Fi-

nally, combining dr and pd outperforms other speci�cations.

Overall, our results suggest that dr and pd together provide not only relevant information

for understanding asset-pricing dynamics but also other key objects in macro-�nance. Through

our analysis, we hope to demonstrate the importance of incorporating market duration, dr , as a

key state variable in macro-�nance studies.

4 Duration and Expected Return

A striking �nding from our forecasting exercises is that market duration alone is quite su�cient

for predicting returns. Augmenting dr with pd or other valuation ratios does not signi�cantly

improve the performance. Therefore, dr captures the combination of state variables that drive the

conditional expected return. Next, we provide further evidence on the return predictive power

of dr . As shown in Section 2, the loadings of dr on state variables depend on various parameters.

We �nd that dr and the conditional expected return coincide in their state-variable loadings.
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4.1 Univariate return prediction

We run the standard predictive regression to forecast market return in the next twelve months:

rt+1 = � + �drt + �t+1, (16)

Because we use overlapping monthly data, we adopt Newey and West (1987) standard errors with

18 lags to account for the moving-average structure induced by overlap (Cochrane and Piazzesi,

2005). We also calculate Hodrick (1992) standard errors. Hodrick (1992) shows that GMM-based

autocovariance correction (e.g., Newey and West, 1987) may have poor small-sample properties.

Under the serial correlation in the error term, another concern is the bias induced by the per-

sistence of the predictor.11 While drt has an autocorrelation below that of the traditional price-

dividend ratio, pdt , we still report the adjusted estimate of � following Stambaugh (1999). In the

appendix (Table A.4), we also report the IVX-Wald test of predictive power (Kostakis, Magdalinos,

and Stamatogiannis, 2014) that explicitly accounts for the predictor persistence.

The adjusted R2 measures in-sample �tness. Several studies raised concerns over the out-

of-sample performance of return predictors (Bossaerts and Hillion, 1999; Goyal and Welch, 2007).

To address these issues, we report the out-of-sample R2 and two formal tests of out-of-sample

performance. We calculate out-of-sample forecasts as a real-time investor, using data up to time

t in the predictive regression to estimate � , which is then multiplied by the time-t value of the

predictor to form the forecast. Out-of-sample forecasting starts from December 1997, when we

have at least ten years of data. Out-of-sample R2 is

R2OOS = 1 −
∑t (rt+1 − r̂t+1)

2

∑t (rt+1 − r t)
2 ,

where r̂t+1 is the forecast value and r is the average of twelve-month returns (the �rst is January-

December 1998). The out-of-sample R2 lies in the range (−∞, 1], where a negative number means
11The persistence of a return predictor can cause small-sample bias (Nelson and Kim, 1993; Stambaugh, 1999) and

spurious regression (Ferson, Sarkissian, and Simin, 2003).
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that a predictor provides a less accurate forecast than the historical mean.

We report the p-value of two out-of-sample performance tests, “ENC” and “CW ”. ENC is

the encompassing forecast test derived by Clark and McCracken (2001), which is widely used in

the literature. We test whether the predictor has the same out-of-sample forecasting performance

as the historical mean and compare the value of the statistic with critical values calculated by

Clark and McCracken (2001) to obtain a p-value range. Clark and West (2007) adjust the standard

MSE t-test statistic to produce a modi�ed statistic (CW ) that has an asymptotic distribution well

approximated by the standard normal distribution, so for CW , we report the precise p-value.

Table 2 presents the results. Column (1) shows that the market duration, dr , demonstrates

a striking degree of return predictive power. The in-sample estimation generates a predictive R2

reaching 24.8%.12 Out-of-sample forecasts deliver an R2 of 14.6%, signi�cantly outperforming the

historical mean as shown by the p-values of ENC and CW .13 The predictive coe�cient is also

large in magnitude, indicating high volatility of the conditional expected return. A decrease of

drt by one standard deviation adds 7.7% to the expected return. Both Newey-West and Hodrick

t-statistics are signi�cant at least at the 1% level.

Column (2) of Table 2 reports the results for pdt . The predictive power of pdt is much

weaker than drt in all aspects. Its in-sample R2 is almost half of that of drt and pdt barely exhibits

any out-of-sample predictive power with R2 equal to 0.4%. In both ENC and CW tests, pdt fails to

beat the historical mean with any statistical signi�cance. Its coe�cient is smaller in magnitude

than that of drt . A decrease in pdt by one standard deviation leads to an increase of expected

return by 5.8%, implying a less volatile expected return than the one from drt . The IVX-Wald test

of Kostakis, Magdalinos, and Stamatogiannis (2014) in Table A.4 in the Appendix also supports

the signi�cant predictive power of drt while rejecting the predictive power of pdt .

Next, we compare drt with two return predictors that are conceptually related. Binsbergen
12Foster, Smith, and Whaley (1997) discuss the potential data mining issues that arise from researchers searching

among potential regressors. They derive a distribution of the maximal R2 when k out of m potential regressors are
used as predictors and calculate the critical value for R2, below which the prediction is not statistically signi�cant.
For instance, when m = 50, k = 5, and the number of observations is 250, the 95% critical value for R2 is 0.164.

13In our calculation of out-of-sample R2 starts from Dec. 1997 (after the �rst ten years of data). Figure A.8 in the
Appendix reports the out-of-sample R2 for di�erent start dates and compares the OOS R2 of dr with that of pd .
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Table 2 Annual Return Prediction
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the return of
the S&P 500 index in the next twelve months. We consider four right-hand side variables (i.e., predictors), drt ,
pdt , �ltered series for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor
extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is reported,
followed by Newey and West (1987) t-statistic (with 18 lags), Hodrick (1992) t-statistic, the coe�cient adjusted for
Stambaugh (1999) bias, and the in-sample adjusted R2. We run the regression monthly. Starting from December
1997, we form out-of-sample forecasts of return in the next twelve months by estimating the regression with data
up to the current month and use the forecasts to calculate out-of-sample R2, ENC test (Clark and McCracken, 2001),
and the p-value of CW test (Clark and West, 2007). Our monthly sample is 1988:01–2019:12.

rt+1

(1) (2) (3) (4) (5)

drt -0.156 -0.228
Hodrick t [-3.354] [-2.924]
Newey-West t (-4.499) (-3.517)
Stambaugh bias adjusted � -0.146

pdt -0.199 0.141
[-2.367] [1.721]
(-2.747) (1.209)
-0.189

�Ft 2.584
[2.313]
(2.804)
2.594

KPt 0.895
[2.960]
(2.857)
0.905

N 384 384 384 384 384
R2 0.248 0.138 0.156 0.149 0.264
OOS R2 0.146 0.004 -0.032 0.041 0.180
ENC 2.968 0.833 0.651 2.978 5.985
p(ENC) <0.05 >0.10 >0.10 <0.05 <0.01
p(CW) 0.022 0.200 0.303 0.031 0.021

and Koijen (2010) extract information about state variables that drive the conditional expected

return and expected cash-�ow growth by estimating a latent-state model. Our approach di�ers

as we do not estimate or �lter the state variables but instead rely on drt , pdt , and valuation ratios

of dividend strips. In particular, the construction of our preferred return predictor, drt , only

requires the total market capitalization and the price of dividends paid in the next year, which

are directly observed from the market rather than estimated. In Column (3) of Table 2, we follow

the procedure in Binsbergen and Koijen (2010) to construct their return predictor, �Ft . While �Ft

slightly outperforms pdt , its predictive power is weaker than that of drt across di�erent metrics.
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Table 3 Correlation between Return Predictors
This table reports the correlation matrix of four main return predictors. dr is our main return predictor, “duration.”
pd is the price-dividend ratio of the S&P 500 index. �F is the �ltered series for demeaned expected returns, following
Binsbergen and Koijen (2010),KP is the single predictive factor extracted from 100 book-to-market and size portfolios
from Kelly and Pruitt (2013). Data sample: 1988:01–2019:12.

dr pd �F KP

dr 1
pd 0.873 1
�F -0.892 -0.967 1
KP -0.565 -0.496 0.468 1

Note that Binsbergen and Koijen (2010) conduct analysis with a time period di�erent from ours.

Our sample period is constrained by the availability and reliability of index futures data and ends

before the Covid-19 era of extreme downward and upward market movements.

While Binsbergen and Koijen (2010) use the aggregate data on realized returns and div-

idend growth, Kelly and Pruitt (2013) demonstrate another �ltering method that utilizes the

cross-section of market-to-book ratios of individual stocks. Individual stocks’ market-to-book

ratios map out the state variables that drive the aggregate market but, as we show in Appendix

I.2, these valuation ratios contain noise that is orthogonal to the expected market return. Kelly

and Pruitt (2013) use the method of partial least squares to reduce the noise. Our approach dif-

fers as we avoid dealing with such noise. drt , pdt , and the valuation ratios of dividend strips of

the aggregate market di�er in their loadings on the aggregate state variables but do not contain

idiosyncratic noise. In our approach, the challenge is to �nd the valuation ratio or a combination

of valuation ratios whose state-variable loadings coincide with those of the conditional expected

return and thereby achieve the highest predictive power. In the next subsection, we characterize

the necessary and su�cient condition for drt to be such a return predictor. Following the proce-

dure in Kelly and Pruitt (2013), we construct their return predictor, denoted by KPt . In column (4)

of Table 2, we report the prediction results. KPt signi�cantly outperforms pdt but still underper-

forms drt across di�erent metrics, such as Newey-West t-statistic, Hodrick t-statistic, in-sample

R2, out-of-sample R2, ENC , CW , and, IVX-Wald test reported in Table A.4 in the Appendix.

While these return predictors are correlated as shown in Table 3, their predictive power
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di�ers signi�cantly with market duration outperforming the rest. In the appendix, we demon-

strate the robustness of our results by repeating the analysis with di�erent forecasting targets.

In Table A.5, we replace the S&P 500 annual return with the excess S&P 500 annual return, and

in Table A.6 and A.7, we consider the Fama-French market portfolio return and excess return,

respectively. Finally, we also show that market duration demonstrates superior return predictive

power at a monthly horizon. Our baseline results are reported in A.8, and see Table A.9 for results

on predicting monthly S&P 500 excess return. Table A.10 and Table A.11 report the results on

predicting the monthly Fama-French market portfolio return and excess return, respectively.

So far, we have compared the return predictive power of drt with that of pdt , which together

with drt span the state space. We also considered �Ft and KPt that are conceptually related. Figure

5 compares dr with other predictors proposed in the literature, including the price-dividend ratio

(pd), the default yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-section

premium (csp), the dividend payout ratio (de), the long-term yield (lty), the term spread (tms), the

T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-term rate of return

(ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio

(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), the consumption-

wealth-income ratio (cay), the short interests index (SII), and the option-implied lower bound of

1-year equity premium (SVIX).14 Most predictors are studied in a return predictability survey by

Goyal and Welch (2007), and others are proposed more recently, such as the short interest index,

“SII” in Rapach, Ringgenberg, and Zhou (2016), and SVIX (Martin, 2017). In the comparison, we

also include pdt , �Ft , and KPt from Table 2.15

In Figure 5, we report in-sample (“IS”) R2, out-of-sample (“OOS”) R2, the absolute values

of Newey-West, and Hodrick t-statistics. dr outperforms other predictors in all aspects. Among

the alternatives, KP , pd , and the book-to-market ratio (“bm”) deliver the most consistent per-
14Note that the dividend yield (dy) is not the inverse of price-dividend ratio (pd) because in the denominator of

dy is the lagged market value (not the current value).
15When constructing KPt , we estimate the partial least squares model following the procedure in Kelly and Pruitt

(2013). In Figure A.5, We report the comparison of return predictive power using the authors’ original parameter
estimates rather than our own estimates.
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Figure 5 Comparison with Alternative Return Predictors.
This graph compares the 1-year return predictive power between drt and other commonly studied predictors in our
sample period. Panel A reports the in-sample adjusted R2. Panel B reports the out-of-sample R2. Negative out-of-
sample R2 indicates that the predictive power is below the historical mean. Panel C reports the absolute values of
Newey and West (1987) t-statistic (with an 18-month lag). Panel D reports the absolute values of Hodrick (1992)
t-statistic. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default
yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-section premium (csp), the dividend payout
ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the
dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm),
the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and
the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg, and Zhou
(2016) (1988-2014). SVIX is an option-implied lower bound of the 1-year equity premium from Martin (2017) (1996-
2012). KP is the single predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). BK is the �ltered series for expected returns following Binsbergen and Koijen (2010).

formance across the four metrics while �F exhibits strong performance except for OOS R2. The

performance of other return predictors is not quite consistent across di�erent metrics.

In Table A.12, we report the correlation between dr and these predictors. Besides pd , �F ,

and KP , all the other predictors with correlation above 50% or below -50%, are all valuation ratios,
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such as the market-to-book ratio and price-earnings ratio. This is consistent with the intuition

in Kelly and Pruitt (2013) and with our emphasis on using valuation ratios to capture informa-

tion embedded in the state variables. In the appendix, we compare dr with other predictors for

alternative forecasting targets, such as S&P 500 excess annual return (Figure A.2), Fama-French

market portfolio annual return (Figure A.3), and Fama-French market portfolio excess annual

return (Figure A.4). As shown in Figure A.5, market duration exhibits the strongest predictive

power across the four metrics and such performance is consistent across all forecasting targets.

4.2 A two-dimensional state space model

The �ndings on return predictability are critical for understanding the structure of both the condi-

tional expected return and market duration. Next, we show that the conditional expected return

is a univariate function of dr (and vice versa) when the market does not contain information

on future cash-�ow growth beyond the next year. Intuitively, under this condition, the price of

next year’s dividends exhausts all information about future cash-�ow growth, so dr , which is the

logarithm of market value minus the logarithm of the price of next year’s dividend, teases out

cash-�ow information and only contains information about the discount rate.

Stock prices are determined by the conditional expectations of future returns and dividends

over di�erent horizons (Campbell and Shiller, 1988). Therefore, a model of the aggregate stock

market requires at least two state variables that capture the conditional expected return and

dividend growth; in other words, the lower bound of the state-space dimension is two. Our

analysis so far shows that two is also the upper bound. Guided by our �ndings in Section 3, we

simplify the general model in Section 2 by specifying a two-dimensional state space. As in Lettau

and Wachter (2007) and Binsbergen and Koijen (2010), one state variable drives the conditional

expectation of the dividend growth rate, and the second state variable drives the conditional

expected return through the price of risk. Speci�cally, gt is given by

gt = zt + g −
1
2
�⊤DΣ�D , (17)
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where zt has the following law of motion

zt+1 = �zzt + �⊤z �t+1 . (18)

The second state variable, yt , with a law of motion

yt+1 = �yyt + �⊤y �t+1 , (19)

drives the price of risk �t , so equation (5) becomes

�t = � + yt , (20)

and the stochastic discount factor (SDF) is given by

Mt+1 = exp
{
−rf −

1
2
�2t (�

⊤
� Σ��)

2 − �t�⊤� �t+1
}
. (21)

In a two-dimensional state space where one state variable, zt , is assigned to drive the expected

dividend growth rate, the price of risk, �t , must be unidimensional, driven by yt , and accordingly,

shocks enter into the SDF as a scalar, i.e., the linear combination given by ��. Any shock can be

priced. The price of risk for the n-th shock is �t��(n), where ��(n) is the n-th element of ��.

As in Section 2, the N -by-1 shock vector �t+1 contains all information at t + 1. The vari-

ables’ shock loadings may di�er, for example, �z ≠ �y . zt and yt can be correlated through their

overlapping exposure to shocks. Also note that, in comparison with the general model in Section

2, the state-variable loadings of gt and �t , i.e., � and �t are set to one. This simpli�cation can be

done as gt and �t load on one state variable, zt and yt , respectively.

In Appendix I, we solve the log price-dividend ratio of the aggregate market

pdt = Apd + Bpdyt + Cpdzt , (22)
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where Apd , Bpd , and Cpd are constant. And the log price-dividend ratio of the dividend strip that

matures in one year,

s1t = A1 + B1yt + C1zt . (23)

Therefore, market duration is

drt = pdt − s1t = Apd − A1 + (Bpd − B1)yt + (Cpd − C1)zt , (24)

where Bpd ≠ Bpd − B1 and Cpd ≠ Cpd − C1. Since drt and pdt have di�erent loadings on zt and yt ,

we can solve zt and yt from drt and pdt . Therefore, market duration and the traditional price-

dividend ratio span the state space. In particular, drt and pdt contain all the necessary information

for forecasting return and dividend growth as we show in Section 3.

Proposition 1 (Spanning) The state variables are functions of drt and pdt , and vice versa.

In Appendix I, we show Cpd = 1/(1 − �1�z) and C1 = 1 and obtain the following result.

Proposition 2 (Discount rate and duration) The conditional expected return is a function of yt

Et[rt+1] = Aer + Beryt , (25)

where Aer and Ber are constant. Under �z = 0, Et[rt+1] is a univariate function of drt and vice versa.

When �z , the autoregressive coe�cient of expected dividend growth rate zt , is zero, we have

drt = Apd − A1 + (Bpd − B1)yt as the exposure of market duration to zt is muted. As yt drives the

conditional expected return, drt and Et[rt+1] become univariate functions of one another. Market

participants’ information at time t about future dividends is summarized by zt which determines

the expected dividend growth rate from t to t + 1. Therefore, if zt lacks persistence, the market

participants do not have information about dividends beyond t + 1. By construction, drt teases

out information about dividend growth up to t + 1 by deducting s1t from pdt , so, intuitively, it

contains only the information about the discount rate or expected return under �z = 0.
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4.3 The persistence of cash-�ow growth expectations

We estimate �z , the persistence of expected dividend growth, using two approaches. Our main

analysis is based on analyst forecasts as a proxy for market participants’ growth expectations.

We estimate �z with two econometric models. For robustness, we also estimate �z by �tting the

latent state model given by (17) and (18) to dividend data.

Our model does not require investors to have rational expectations. As a matter of fact,

even if the data-generating processes di�er from equations (17) and (18) in our model, as long as

agents in this economy take these equations as the stochastic processes that govern the aggregate

dividends, our results on stock and dividend strip valuation hold. Therefore, to estimate �z , the

persistence of the expected dividend growth rate, we examine market participants’ subjective

expectations—the analyst forecasts obtained from IBES.

A large literature has demonstrated that analyst forecasts re�ect analysts’ beliefs as their

compensation are tightly linked to forecast precision, and that analyst forecasts are likely to

represent the market participants’ beliefs more broadly (e.g., Mikhail, Walther, and Willis, 1999;

Cooper, Day, and Lewis, 2001; Bradshaw, 2004). Admittedly, analyst forecasts may be distorted

due to various incentive and institutional frictions (e.g., Gu and Wu, 2003; Malmendier and Shan-

thikumar, 2007, 2014). However, the bias is contained as long as such frictions do not vary over

time systematically in a way that correlates with the analysts’ true beliefs. Moreover, we will

supplement our estimate of �z based on analyst forecasts with an alternative estimate from a

standard �ltering approach applied to the state space model given by equation (17) and (18).

Recent studies using analysts’ cash-�ow expectations have made substantial progress in

explaining a variety of phenomena in asset pricing.16 Moreover, our focus on the persistence of
16For example, Bordalo, Gennaioli, La Porta, and Shleifer (2019) �nd that analyst forecasts of �rms’ long-term

earnings growth overreact to news about fundamentals, leading to predictable cross-sectional return variations.
De La O and Myers (2021) show that analyst short-term earnings forecasts, aggregated to the S&P 500 index level,
explain a substantial share of the price-dividend ratio’s variation. Nagel and Xu (2022) propose a model where agents
form beliefs of cash-�ow growth based on their experienced growth. Such beliefs give rise to a sizable and counter-
cyclical equity premium. Bordalo, Gennaioli, La Porta, and Shleifer (forthcoming) incorporate analyst forecasts of
short- and long-term earnings of the S&P 500 index into a dividend discount model with a constant discount rate,
which generates a “synthetic" index price that closely resembles the actual price and exhibits “excess” volatility.
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Table 4 Summary Statistics: Cash Flow Growth Forecasts
This table reports the number of observations, mean, standard deviation, minimum, maximum, quartiles, and
monthly autocorrelation (�) of various measures of cash �ow growth expectations. EAt Δet,t+1, EAt Δet+1,t+2, and
EAt Δet+2,t+3 are forecasts of 1-year earnings growth for �scal year 1, 2, and 3 provided by IBES Global Aggregate
(IGA). IGA Δet and Compustat Δet are the actual 1-year earnings growth from IGA and Compustat, respectively.
EAt Δet,t+1 and LTGt are forecasts of 1-year and long-term earnings growth that we self-aggregate from the IBES
Unadjusted US Summary Statistics File. Data sample: 1988:01–2019:12.

obs mean std min 25% 50% 75% max �

EAt Δet,t+1 384 0.103 0.096 -0.167 0.056 0.103 0.154 0.425 0.897
EAt Δet+1,t+2 384 0.134 0.043 -0.069 0.104 0.127 0.157 0.269 0.830
EAt Δet+2,t+3 384 0.130 0.036 0.052 0.100 0.122 0.159 0.217 0.953
IGA Δet,t+1 384 0.072 0.135 -0.380 -0.008 0.092 0.148 0.425 0.929
Compustat Δet,t+1 384 0.068 0.481 -2.175 -0.042 0.122 0.187 2.190 0.976
LTGt 384 0.125 0.018 0.093 0.115 0.120 0.129 0.187 0.986

agents’ growth expectations is related to the theoretical and empirical works of Gabaix (2019) and

Wang (2020), who highlight the importance of agents’ perceived persistence of key state variables

in generating patterns of under and over-reaction in belief formation and asset prices.

As the coverage of dividend forecasts started in 2003 in IBES and is too short for our anal-

ysis, we follow the literature and proxy for analysts’ expectation of dividend growth with their

earnings forecasts (available since 1976). The following accounting identity connects the earn-

ings and dividends: Dt = Earningst × (1 − plowback ratet). As documented by Pástor, Sinha, and

Swaminathan (2008) and Chen, Da, and Zhao (2013), the plowback rate is quite stable. Therefore,

the growth rates of dividends are empirically close to those of earnings: For k = 1, 2, and 3 years,

Δdt+k ≡ ln(
Dt+k

Dt+k−1)
≈ Δet+k ≡ ln(

Earningst+k
Earningst+k−1)

. (26)

Note that Δdt+k is the one-year growth rate from t + k − 1 to t + k. For example, for k = 2, Δdt+2 is

the dividend growth rate from t + 1 to t + 2. The same notation applies to earnings and earnings

growth expectations. Taking the analyst’s expectations, EA
t (⋅), on both sides, we can proxy for

expected dividend growth using expected earnings growth:

EA
t (Δdt+k) ≈ E

A
t (Δet+k) ≈ ln(

EA
t (Earningst+k)

EA
t (Earningst+k−1))

, (27)
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where, for k = 1, EA
t (Earningst+k−1) = Earningst is the realized dividend in the current year.17

IBES Global Aggregates (IGA) provides a forecast of aggregate earnings growth for the

S&P 500 index based on �rm-level earnings forecasts. The aggregation procedure weighs indi-

vidual companies by their market capitalization.18 To transform earnings forecasts to forecasts

of growth rates, IGA takes the procedure given by equation (27). The IGA data is available at a

weekly frequency. We consider both weekly and monthly frequencies. For monthly frequency,

we take the last weekly observation of each month. At time t , analysts’ forecasts of earnings

are available at three horizons: one, two, and three years, i.e., EA
t (Earningst+1), EA

t (Earningst+2),

and EA
t (Earningst+3). Moreover, since IGA does not aggregate �rm-level long-term growth (LTG)

forecasts, we follow the same aggregation procedure to create an index-level LTG forecast that

will allow us to estimate �z with alternative methods. The �rm-level LTG forecasts are obtained

from the IBES Unadjusted US Summary Statistics File. Table 4 provides summary statistics.

Next, we map the expectations of cash-�ow growth to the model counterparts and derive

a system of equations that can be used to estimate �z . First, we acknowledge that the analyst

forecasts may not perfectly capture market participants’ expectations by adding a noise term

between analysts’ expectation and the market participants’ expectation: For k = 1, 2, 3,

EA
t (Δet+k) = Et (Δet+k) + "At,k , (28)

where Et (⋅), is the market participants’ expectation. Equations (17) imply

EA
t (Δet+1) = g + zt + "

A
t,1

EA
t (Δet+2) = g + Et (zt+1) + "At,2 = g + �zzt + "

A
t,2

EA
t (Δet+3) = g + Et (zt+2) + "At,3 = g + �

2
zzt + "

A
t,3.

17We switch the order of EAt (⋅) and ln (⋅), assuming Jensen’s inequality terms are negligible for the purpose of
estimating �z . This is in line with the model in Section 2: The growth rates are log-normally distributed, so the
ignored terms contain constant variances, which do not a�ect the estimates of �z .

18To deal with the fact that companies have di�erent �scal year-end, IGA calendarizes all company-level data to
a December calendar year before aggregation. This approach follows the Compustat rule. Please refer to “Thomson
Reuters Datastream IBES Global Aggregates Reference Guide” for more detail.
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Table 5 The Persistence of Expected Cash-Flow Growth from Analyst Forecasts
This table reports the estimates of �z , the autoregressive coe�cient of expected cash-�ow growth, based on equation
(29). The estimation uses aggregate earnings growth forecasts of the S&P 500 Index obtained from IGA. Columns
(1) and (3) report the estimates of �z using monthly data, while columns (2) and (4) report the estimates of �z using
weekly data. columns (1) and (2) use earnings growth forecasts for 1,2 and 3 years ahead to estimate the two-equation
system (29), while columns (3) and (4) only use earnings growth forecasts for 1 and 2 years ahead to estimate the
�rst equation in (29). t-statistics based on Driscoll-Kraay standard errors with autocorrelation of up to 18 lags are
reported in parentheses. Data sample: 1988:01–2019:12.

(1) (2) (3) (4)

(1 − �z)g 0.122 0.129 0.141 0.133
(16.906) (13.995) (15.536) (16.745)

�z 0.015 0.028 -0.071 -0.073
(0.381) (0.690) (-1.379) (-1.295)

N 1887 768 384 943
R2 0.001 0.003 0.025 0.028
Sample Monthly Weekly Monthly Weekly
Periods Y1:Y3 Y1:Y3 Y1:Y2 Y1:Y2

Using the �rst equation to substitute out zt in the second and third equations, we obtain a system:

⎡
⎢
⎢
⎢
⎣

EA
t (Δet+2)

EA
t (Δet+3)

⎤
⎥
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡ yAt

= (1 − �z) g + �z

⎡
⎢
⎢
⎢
⎣

EA
t (Δet+1)

EA
t (Δet+2)

⎤
⎥
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡ xAt

+
⎡
⎢
⎢
⎢
⎣

"At,1 − �z"At,0

"At,2 − �z"At,1

⎤
⎥
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡ �t

. (29)

Therefore, we estimate �z by regressing yAt on xAt . The identi�cation assumption is that under

the econometricians’ belief, the expectation of the disturbance �t is zero conditional on xAt . The

deviations of analysts’ expectations from market participants’ expectations are allowed to be

correlated across the starting dates of annual dividend growth, i.e., t , t + 1, and t + 2.19

We estimate equation (29) with both monthly (columns 1 and 3) and weekly observations

(columns 2 and 4) of analyst forecasts. The results are reported in Table 5, Panel A. In columns

(1) and (2), our estimation includes both equations in (29), while in Column (3) and (4), we only

include the �rst equation, i.e., only using forecasts at one- and two-year horizons for better data

quality. Across the speci�cations, the estimate �̂z is statistically indistinguishable from zero.
19The identi�cation of �z is robust to the correlation between these errors and �t in the model in Section 2, i.e., the

structural shocks to realized dividend, market participants’ beliefs on cash-�ow dynamics, and their price of risk.
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Table 6 The Persistence of Expected Cash-Flow Growth from LTG Forecasts
This table reports the estimates of �LTz , the regression coe�cient in

log(1 + LTGt ) = const + �LTz EAt [Δet+1] + "t ,

where LTGt is the long-term growth forecasts (LTG) of the S&P 500 Index, self-aggregated from stock-level LTG
forecasts from the IBES Unadjusted Summary File. The short-term forecast, EAt [Δet+1], is the IGA 1-year earnings
growth forecast (IGA EAt [Δet+1]). t-statistics based on Newey-West standard errors with autocorrelation of up to 18
lags are reported in parentheses. Our monthly observations are from 1988:01 to 2019:12.

(1)

log(1 + LTGt )

Intercept 0.116
(28.615)

EAt [Δet+1] 0.017
(0.711)

N 384
R2 0.011

Next, we consider an alternative way to estimate �z by exploring the relationship between

forecasts of short-term and long-term earnings growth (LTG). IBES provides �rm-level forecasts

of the annualized average growth rate of earnings over the next three to �ve years and has been

adopted in the recent literature on expectation formation (e.g., La Porta, 1996 and Bordalo, Gen-

naioli, La Porta, and Shleifer, 2019). Given the autoregressive structure in equation (18), the

expected growth rate from period n to n + 1 depends on the expected growth rate over the very

next period via a coe�cient �nz . If �z is zero, then such a coe�cient is zero, which implies that the

average growth rate over three years and beyond does not depend on the expected growth rate

over the next year. Therefore, we regress monthly observations of LTG forecast on EA
t [Δet+1],

and denote the regression coe�cient by �LTz . Our estimate of �LTz is statistically indistinguishable

from zero. Consistent with our �ndings in Table 5, this implies �z .

Our �nal method to estimate �z is to directly estimate the state-space model given by equa-

tions (17) and (18) with the realized dividend data. Using the standard Kalman �lter, we obtain

estimates of �z . For comparison, we report results for both the S&P 500 index and the Fama-French

market portfolio (“MKT”).20 Since the model is set up at annual frequency, we use annual (non-
20We obtain dividend data for the Fama-French market portfolio from the CRSP NYSE/NYSEMKT/Nasdaq Value-

Weighted Market Index.
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Table 7 The Persistence of Expected Cash-Flow Growth from the State-Space Model
This table reports the estimation results of 1) the unrestricted state-space model given by equations (17) and (18)
in Section 2, 2) the restricted state-space model (i.e., �z = 0), and for comparison, 3) the MA(1) model (Δdt+1 =
g + �D"t+1 + ��D"t ), and 4) the AR(1) model (Δdt+1 = g + 
Δdt + �D"t+1) of the dividend growth ratres. Panel A uses
the annual (non-overlapping) dividend growth of the S&P 500 index, and Panel B uses the annual (non-overlapping)
dividend growth of the Fama-French market portfolio. The log likelihood (“LogL”), AIC, and BIC are reported. t-stats
are in the squared bracket.

�̂z ĝ �̂d �̂z �̂ 
̂ LogL AIC BIC

Panel A: S&P 500

Unrestricted 0.26 0.06 0.00 0.11 74.44 -140.88 -128.97
[0.94] [3.01] [0.00] [1.70]

Restricted 0.06 0.08 0.08 71.36 -136.72 -127.79
[4.68] [0.00] [0.00]

MA(1) 0.06 0.10 0.41 76.41 -146.82 -137.89
[3.38] [13.45] [6.11]

AR(1) 0.04 0.11 0.26 74.50 -142.99 -134.06
[3.64] [14.90] [3.51]

Panel B: MKT

Unrestricted -0.08 0.06 0.00 0.15 43.96 -79.92 -69.8
[-0.06] [3.86] [0.00] [0.12]

Restricted 0.06 0.11 0.11 43.67 -81.34 -73.8
[3.62] [0.10] [0.10]

MA(1) 0.06 0.15 -0.09 44.00 -82.00 -74.4
[3.94] [6.99] [-1.02]

AR(1) 0.06 0.15 -0.08 43.96 -81.93 -74.39
[3.89] [6.98] [-0.87]

overlapping) dividend growth data. The sample spans 1926 to 2019.21 The results are reported in

Table 7, where Panel A and B are for S&P 500 and MKT, respectively. In the row “Unrestricted”

of Panel A and B of Table 7, the estimates of �̂z are statistically indistinguishable from zero.22

The restricted model with �z = 0 generates similar likelihood and information criteria, indicating

that allowing �z to be a free parameter does not signi�cantly improve the model �tness. We also

estimate MA(1) and AR(1) models for comparison and �nd that the estimates of the autoregres-

sive coe�cient, i.e., � and 
 for MA(1) and AR(1), respectively, are statistically indistinguishable

from zero. In sum, the state-space approach delivers a similar message as the estimation based
21We also used the longest available S&P 500 dividend series starting from 1872 and obtained similar results. The

results are available upon request.
22The Kalman �lter assumes that the shocks to realized and expected dividend growth are uncorrelated. In the

appendix, we demonstrate the robustness of our estimate of �z by considering di�erent values of the correlation,
from -0.9 to 0.9, while �xing the volatility of realized-dividend shock at the estimate in Panel A. The estimated �z
barely moves with the value of shock correlations in [−0.9, 0.9] as shown in Figure A.7.

35



Table 8 Time-varying �z Estimates
This table reports the summary statistics of the rolling-window estimates of �z using weekly observations, where
each rolling window spans three years. In each window, we estimate �z following equation (29), using aggregate
earnings growth forecasts of the S&P 500 Index obtained from IGA. Data sample: 1988:01–2019:12.

count mean std min 25% 50% 75% max �

�̂z,t 384 0.025 0.157 -0.260 -0.066 0.001 0.074 0.791 0.975

on analyst forecasts: The persistence of growth expectation is close to zero.

In the last exercise, we conduct a rolling-window estimation of �z following the method in

Table 5. A rolling window contains three years of weekly observations.23 The summary statistics

of the rolling-window estimates are reported in Table 8. Naturally, the model of agents’ belief

formation may adjust over time, so the estimate of �̂z �uctuates. Overall, the results are similar

to those in Table 5, and in particular, the mean and median of the �̂z series are close to zero. Our

�ndings suggest that the expected cash-�ow growth rate lacks persistence (�z is close to zero),

which in our model implies a one-to-one mapping between market duration, dr , and expected

return. In the next proposition, we characterize more tightly the connection between the value

of �z and return predictability. The proof is in the Appendix.

Proposition 3 (�z and return forecast errors) Let �t+1 denote the forecast error when predicting

rt+1 with drt and let �z denote the autoregressive coe�cient of expected cash �ow growth zt in equation

(18). If �z > 0, then �t+1 is positive. If �z < 0, then �t+1 is negative.

The proposition implies that in a subsample where the estimate of �z is positive (negative),

we would expect the return forecasting error to be positive (negative). In Figure 6, we plot the

rolling-window estimate of �z estimates against the return forecasting residuals (denoted by "t )

from the corresponding rolling window with drt as the predictor. The two time series track

each other closely, with a correlation of 0.42.24 This provides further evidence of the connection

between return predictability and the lack of persistence in expected cash-�ow growth.
23The results are similar if we use alternative window lengths from one to �ve years (available upon request). Our

sample period is 1988–2019. The �rst estimate of �z uses three years of IGA data starting in 1985.
24In Figure A.6 in the Appendix, we plot �z,t against the out-of-sample forecast errors and obtain a similarly

positive correlation. We also regress the rolling-window return prediction errors, both in-sample and out-of-sample,
on the rolling-window estimate of �z and �nd a positive regression coe�cient (see Table A.13 in the Appendix).
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Figure 6 Rolling Estimate of Expected Growth Persistence and Return Prediction Errors
This �gure plots the rolling estimate of the autoregressive coe�cient of expected cash �ow growth, �̂z,t , and the
return prediction errors using market duration (drt ) as the predictor. �̂z,t is estimated using analyst forecasts of S&P
500 aggregate earnings in rolling regressions with a three-year window. This �gure also plots the predictive residuals
(denoted by "t ) from the rolling-sample predictive regressions. The correlation between the two time series is also
reported on the graph. Our monthly sample is 1988:01–2019:12.

Market duration dr is the log price-dividend ratio minus the valuation ratio of the one-year

dividend strip, which, by construction, teases out market information about near-term growth

embedded in the price of the one-year dividend strip. Therefore, dr only contains information

about the discount rate, if the market participants possess limited information about growth be-

yond the next year. In our model, the time-t expectation of growth from t +2 onward is a constant

under �z = 0 so the market does not contain information about cash-�ow growth beyond the next

year under �z = 0. Next, we step outside of our model given by equations (17) and (18) and con-

sider more broadly whether the market contains information about long-term growth.

4.4 Cash-�ow growth predictability: Short horizon vs. long horizon

In Section 4.3, our focus is on estimating �z , the autoregressive coe�cient of expected cash-�ow

growth. In our model, �z = 0 implies that the market participants do not have information

about cash-�ow growth beyond the next year. While our analysis of state space in Section 3
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Table 9 One-year Dividend and Earnings Growth Prediction
This table reports the results of dividend and earnings growth prediction. The dependent variables are the 1-year-
ahead realized earnings growth from IGA (columns 1-3), realized dividend growth from Bloomberg (columns 4-6),
and realized earnings growth from Compustat (columns 7-9). The independent variables are analyst forecasts of one-
year earnings growth from IGA (EAt (Δet+1)), duration dr , and the price-dividend ratio pd . t-statistics are calculated
based on Newey-West standard errors with 18 lags and are reported in parentheses. Data sample: 1988:01–2019:12.

IGA Δet+1 Δdt+1 Compustat Δet+1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept -0.056 -0.426 -0.328 0.028 -0.312 -0.295 0.122 0.478 0.394
(-4.127) (-1.357) (-2.413) (1.300) (-1.526) (-1.663) (0.814) (0.374) (0.352)

EAt (Δet+1) 1.204 1.119 0.326 0.204 -0.591 -0.963
(20.101) (15.193) (2.537) (2.824) (-0.629) (-1.067)

drt -0.248 -0.110 -0.181 -0.156 -0.333 -0.452
(-2.328) (-2.625) (-3.535) (-4.188) (-1.129) (-2.016)

pdt 0.385 0.187 0.285 0.249 0.238 0.409
(2.354) (2.599) (2.782) (3.095) (0.405) (0.958)

N 372 372 372 372 372 372 372 372 372
R2 0.731 0.199 0.769 0.193 0.386 0.454 0.014 0.053 0.086

supports the model speci�cation, we want to step outside of our model and provide more evidence

in this subsection on the fact that market information about long-term growth is limited. We

do so by characterizing cash-�ow predictability at di�erent horizons. Intuitively, if the market

participants have information about cash-�ow growth at a certain horizon, we should be able to

predict such cash-�ow growth with information revealed in analysts’ forecasts and dr and pd as

state variables.

In Table 9, we show strong predictability of near-term growth. In column (1), we simply

regress the realized one-year growth rate of aggregate earnings from �rms covered by IGA on

the ex ante analysts’ forecast. The R2 is 0.73, so analysts and market participants in general

are able to forecast near-term cash-�ow growth very well. In column (2), we use our pair of

state variables, dr and pd , to forecast cash-�ow growth and obtain a R2 of 0.20. Combining the

information in dr and pd with the analysts’ forecast in column (3), the in-sample prediction R2

rises to 0.77. In the other columns of Table 9, we replace the forecasting target. Naturally, cash-

�ow predictability declines in the other cases because the predictor (IGA analyst forecast, in

particular) targets the earnings growth of IGA-covered �rms rather than that of all �rms covered
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Table 10 Weaker Earnings Growth Predictability beyond One Year
This table reports results of regressions that predict earnings growth at various horizons. The dependent variables
are realized earnings growth from IGA of next year (columns 1-3), between the �rst and second years (columns 4-6),
and between the second and third years (columns 7-9). The independent variables are analysts’ forecasts of one-year
earnings growth from IGA (IGA EAt (Δet+1)), the self-aggregated long-term earnings growth forecasts (LTGt ) of the
S&P 500 Index, the market duration dr and the price-dividend ratio pdt . t-statistics calculated based on Newey-West
standard errors with 18 lags are reported in parentheses. Data sample: 1988:01–2019:12.

IGA Δet,t+1 IGA Δet+1,t+2 IGA Δet+2,t+3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.053 -0.426 -0.309 0.325 -0.063 -0.037 0.185 0.513 0.496
(1.360) (-1.357) (-2.786) (2.446) (-0.211) (-0.141) (1.596) (1.577) (1.685)

IGA EAt (Δet+1) 1.222 1.174 0.030 -0.047 -0.319 -0.274
(20.312) (15.749) (0.192) (-0.348) (-2.594) (-1.947)

LTGt -0.889 -1.344 -2.155 -2.295 -0.711 -0.295
(-3.171) (-3.092) (-2.186) (-1.578) (-0.768) (-0.234)

drt -0.248 -0.077 -0.144 -0.103 0.096 0.068
(-2.328) (-1.568) (-2.878) (-2.319) (1.449) (1.215)

pdt 0.385 0.189 0.181 0.207 -0.216 -0.166
(2.354) (2.797) (1.690) (2.351) (-1.666) (-1.399)

N 372 372 372 360 360 360 348 348 348
R2 0.74 0.20 0.78 0.08 0.08 0.14 0.07 0.07 0.11

by the Bloomberg database (columns 4-6) or that of all Compustat �rms (columns 7-9). Overall,

our �ndings suggest that market participants are informed of near-term cash-�ow growth. One

explanation is that �rms tend to provide forward guidance on their earnings outlook, increasingly

so in recent years.

Next, we examine the predictability of cash-�ow growth at longer horizons. So far, our

analysis of growth expectations has been based on the autoregressive model given by equations

(17) and (18), and the focus has been on �z , the persistence parameter, and its connection with

the return predictive power of market duration dr . In this model, we have the time-t expected

growth from t + 1 to t + 2, Et[zt+2] = �zEt[zt+1] = �2zzt , so market information about long-term

growth is contained in the expected growth rate over the next period. In the following exercises,

we expand the set of potential predictors of long-term growth. In particular, we consider the LTG

forecast, the aggregated long-term growth forecast over three to �ve years.

In Table 10, we �rst predict earnings growth over the next year from columns (1) to (3), and

consistent with our �ndings in Table 9, predictability is strong, which suggests that market par-
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ticipants are informed about short-term growth. In columns (4) to (6), we use the same variables

to predict earnings growth from t + 1 to t + 2 and �nd that predictability declines dramatically.

Comparing columns (1) and (4), the predictive R2 declines from 0.74 to 0.08. Our forecasting

exercise in columns (7) to (9) delivers the same message. The predictability of growth over an

even longer horizon, i.e., from t + 2 to t + 3, is even weaker. In Figure A.9 in the Appendix, we

report the results of alternative predictive models that take advantage of more valuation ratios

(and potentially richer information embedded in the state space). Our conclusion remains robust.

Overall, our �ndings suggest that market participants are not informed about long-term

growth, but regarding short-term growth, market information, whether from analysts’ forecasts

or our state variables, is quite rich. These results on the term structure of cash-�ow predictability

shed light on the strong connection between market duration dr and expected return. By con-

struction, dr deducts the valuation ratio of the one-year dividend strip from the price-dividend

ratio pd and thereby teases out market information about near-term growth.

One may form a market timing strategy guided by our �ndings on dr as a return predictor.

Speci�cally, when market duration increases, the strategy shorts the market, and when market

duration decreases, the strategy adds to the long position. This strategy bets against the market

valuation of long-duration cash �ows. An out-of-sample R2 of 14.6% in column (1) of Table 2

implies that the Sharpe ratio of this market timing strategy is 0.58, which is much higher than the

Sharpe ratio from other return predictors, for example, 0.37 in Campbell and Thompson (2008).

In the appendix, we show how to calculate the Sharpe ratio based on the out-of-sample R2.

5 Conclusion

We construct a valuation-based measure of stock market duration as the ratio of total market

capitalization to the price of dividends paid in the very next year. An increase in market duration

implies the valuation of long-term cash �ows increases relative to that of short-term cash �ows.

While market duration (dr ) represents the slope of the valuation term structure, the traditional
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price-dividend ratio (pd) represents the level. After establishing the connection between state

variables and valuation ratios of dividend strips, we demonstrate that the state space is two-

dimensional. Through return and cash-�ow predictions, we �nd that dr and pd span the state

space and may serve as a pair of state variables for asset pricing and in macro-�nance studies.

Our �ndings not only establish market duration as a key state variable of important appli-

cations but also shed light on what drives market duration. We �nd a tight link between market

duration and expected return. dr exhibits strong return predictive power, outperforming other

predictors. Such a connection between dr and the discount rate emerges when market informa-

tion on long-term cash �ows is limited, and empirically, we document the supporting evidence

of a sharp decline of cash-�ow predictability once the forecasting horizon goes beyond one year.

Cochrane (2011) points out how return predictability emerges from the lack of cash-�ow

predictability and the price-dividend ratio should forecast future returns. We �nd that cash �ows

in the near term are in fact highly predictable, but cash �ows over the long term are not. There-

fore, our measure of market duration is a better return predictor than the price-dividend ratio.

Our �ndings support a market timing strategy of betting against market duration. When the

valuation of long-term cash �ows rises relative to that of near-term cash �ows about which mar-

ket participants are more informed, it is likely due to a lower discount rate or exuberance over

long-term growth (Bordalo, Gennaioli, La Porta, and Shleifer, forthcoming).
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Appendix I: Derivation

I.1 Solving the valuation ratios
The price-dividend ratio of the dividend strip with maturity n, Pn,t/Dt , satis�es the following
recursive equation

Pn,t
Dt

= Et [Mt+1
Dt+1

Dt

Pn−1,t+1
Dt+1 ] . (30)

We conjecture that

ln(
Pn,t
Dt )

= A (n) + B (n)T Xt . (31)

Substituting this expression and expressions of stochastic discount factor and dividend
growth into the recursive equation, we have

exp
{
A (n) + B (n)⊤ Xt

}

=Et [exp
{
−rf −

1
2
�⊤t Σ�t − �

⊤
t �t+1 + gt + �

⊤
D�t+1 + A (n − 1) + B (n − 1)

⊤ Xt+1
}

]

=Et [exp
{
gt − rf −

1
2
�⊤t Σ�t + A (n − 1) + B (n − 1)

⊤ ΠXt + (�D − �t + �XB (n − 1))⊤ �t+1
}

]

= exp
{
gt − rf −

1
2
�⊤t Σ�t + A (n − 1) + B (n − 1)

⊤ ΠXt
}

{
+
1
2
(�D − �t + �XB (n − 1))⊤ Σ (�D − �t + �XB (n − 1))

}

= exp
{
gt − rf + A (n − 1) + B (n − 1)⊤ ΠXt − (�D + �XB (n − 1))⊤ Σ�t

}
{
+
1
2
(�D + �XB (n − 1))⊤ Σ (�D + �XB (n − 1))

}
(32)

The coe�cients on Xt should match B (n) on the left hand side, so we have

B (n) = (Π⊤ − �Σ�X) B (n − 1) + � − �Σ�D − 
 . (33)

The constants must sum up to A (n) on the left hand side, so we have

A (n) =A (n − 1) + g − r − (�D + �XB (n − 1))⊤ Σ�+ (34)
1
2
(�D + �XB (n − 1))⊤ Σ (�D + �XB (n − 1)) .

The fact that P 0t = Dt implies the boundary conditions, A (0) = B (0) = 0, which pins down a
solution of A (n) and B (n).

Finally, we solve the log price-dividend ratio of the aggregate stock market. We conjecture

pdt = ln (Pt/Dt) = A + BTXt , (35)

and proceed to solve A and B. Following Campbell and Shiller (1988), we log-linearize the stock
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market return

rmktt+1 =�0 + �1pdt+1 − pdt + Δdt+1
=�0 − (1 − �1) A − B⊤ (I − �1Π)Xt + gt + (�1�XB + �D)⊤ �t+1 (36)

Under the no-arbitrage condition, we have

1 = Et [Mt+1 exp(rmktt+1 )] . (37)

We follow the same method of matching undetermined coe�cients in the analysis of dividend
strip valuation ratios and solve

A =
1

1 − �1 [
g − r + �0 − (�1�XB + �D)⊤ Σ� +

1
2
(�1�XB)⊤ Σ (�1�XB) + (�1�XB)⊤ Σ�D] (38)

B = (I − �1Π⊤ − �1�Σ�X)
−1 (� − �Σ�D − 
) . (39)

I.2 Valuation ratios from the cross section
Consider an individual stock i. The dividend dynamics of �rm i depend not only on the aggregate
state variables, Xt , but also on the �rm i-speci�c state variables, Zi,t , that is Ki-dimensional and
independent fromXt . Without loss of generality, we assume that Zi,t evolves as a �rst-order vector
autoregression

Zi,t+1 = ΩZi,t + �⊤i,Z�i,t+1, (40)

where �i,t+1 is a Ni-by-1 vector of i-speci�c news that has a normal distribution N (0, Σi) and
is independent over time and independent from the aggregate shocks �t+1. We use subscript i
to di�erentiate �rm i from the aggregate variables (without subscript i) and other �rms (with
subscript j ≠ i).

The dividend growth rate of �rm i loads on the aggregate and idiosyncratic shocks

ln(
Di,t+1

Di,t ) = gi,t + �⊤i,D�t+1 + �
⊤
i,��i,t+1, (41)

where the expected dividend growth rate is given by

gi,t = �⊤i Xt + �
⊤
i Zi,t + g i −

1
2
�⊤i,DΣ�i,D −

1
2
�⊤i,�Σi�i,� , (42)

which loads on the aggregate state variables, Xt , and �rm i-speci�c state variables, Zi,t .
The ratio of �rm i’s dividend strip price, Pni,t , to �rm i’s current dividend is

Pni,t
Di,t

= exp
{
Ai (n) + Bi (n)⊤ Xt + Ci (n)⊤ Zi,t

}
, (43)

where Ai (n), Bi (n), and Ci (n) are �rm i-speci�c, deterministic functions of n given by the recur-
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sive equations

Bi (n) = (Π⊤ − �Σ�X) Bi (n − 1) + �i − 
 − �Σ�i,D . (44)
Ci (n) =Ω⊤Ci (n − 1) + �i (45)

Ai (n) =Ai (n − 1) + g i − r − (�i,D + �XBi (n − 1))
⊤ Σ� +

1
2
(�i,D + �XBi (n − 1))⊤ Σ

(�i,D + �XBi (n − 1)) +
1
2
(�i,� + �i,ZCi (n − 1))⊤ Σi (�i,� + �i,ZCi (n − 1)) . (46)

with the initial conditions

Ai (0) = 0, Bi (0) = 0, and Ci (0) = 0. (47)

The price of �rm i’s stock, Pi,t , is the sum of all its dividend strips

Pi,t
Di,t

=
+∞

∑
n=1

Pni,t
Di,t

=
+∞

∑
n=1

exp
{
Ai (n) + Bi (n)⊤ Xt + Ci (n)⊤ Zi,t

}
. (48)

In Appendix I, we use the log-linearization method of Campbell and Shiller (1988) to solve an
approximate exponential-a�ne form, so the log price-dividend ratio of stock i is

ln(
Pi,t
Di,t)

≈ Ai + B⊤i Xt + C
⊤
i Zi,t . (49)

Because Zi,t is independent from Xt , recovering the state space Xt using individual stocks’ price-
dividend ratio brings in noise. In a forecasting context, Kelly and Pruitt (2013) deal with this issue
using partial least squares, which is a method to compress the cross-section of valuation ratios
into signals (about the state variables) that are most relevant for the forecasting targets.

I.3 Solving the two-dimensional state space model
We conjecture that the market price-dividend ratio is exponential-a�ne in the state variables, so
the log ratio is

pdt = ln (St/Dt) = A + Byt + Czt .

Next, we use the log-linearization of Campbell and Shiller (1988), i.e.,

rt+1 = �0 + �1pdt+1 − pdt + Δdt+1,

and substitute this log market return into the no-arbitrage condition

Et [Mt+1 exp{rt+1}] = 1.

to obtain

Et [exp
{
−rf −

1
2
�2t (�

⊤
� Σ��)

2 − �t�⊤� �t+1 + �0 + �1pdt+1 − pdt + Δdt+1
}

] = 1 (50)
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Using the conjecture of pdt and pdt+1 and the speci�cation of gt and Δdt+1, we obtain

Et [exp
{
1
1
− rf −

1
2
�2t (�

⊤
� Σ��)

2 − �t�⊤� �t+1 + �0 − A − Byt − Czt + zt + g −
1
2
�⊤DΣ�D + �

⊤
D�t+1

+�1A + �1B(�yyt + �⊤y �t+1) + �1C(�zzt + �
⊤
z �t+1)

1
1

}

] = 1 (51)

For the conjecture of pdt functional form to hold, the coe�cient on zt is zero, so we obtain

C =
1

1 − �1�z
(52)

Collecting all terms with shocks at t + 1 and using the moment-generating function, we obtain

Et [exp
{
−�t�⊤� �t+1 + �

⊤
D�t+1 + �1B�

⊤
y �t+1 + �1C�

⊤
z �t+1

}
] = exp

{
1
2
�2t (�

⊤
� Σ��)

2 (53)

−(�D + �1B�y + �1C�z)⊤Σ���t +
1
2
(�D + �1B�y + �1C�z)⊤Σ(�D + �1B�y + �1C�z)

}

Substituting this expression into the no-arbitrage condition, we obtain

exp
{
−rf + �0 − A − Byt − Czt + zt + g −

1
2
�⊤DΣ�D − (�D + �1B�y + �1C�z)

⊤Σ��(� + yt)

+�1A + �1B�yyt + �1C�zzt +
1
2
(�D + �1B�y + �1C�z)⊤Σ(�D + �1B�y + �1C�z)

}
= 1 (54)

For the conjecture of pdt functional form to hold, the coe�cient on yt is zero, so we obtain

B = −
(�D + �1C�z)⊤Σ��
1 + �1�⊤y Σ�� − �1�y

(55)

Finally, all the constant terms should add up to zero, so we obtain

A =
g − rf + �0 − 1

2�
⊤
DΣ�D + 1

2 (�D + �1B�y + �1C�z)
⊤Σ(�D + �1B�y + �1C�z − 2���)

1 − �1
(56)

In the main text, to clarify the notations, we use Apd , Bpd , and Cpd to denote A, B, and C above,
respectively.

Next, we solve the time-t log price-dividend ratio of the dividend strip that matures at t +1.
The no-arbitrage condition dictates

Et [Mt+1
Dt+1

P 1t ] = 1, (57)

or equivalently

Et [Mt+1
Dt+1

Dt

Dt

P 1t ]
= Et [Mt+1 exp

{
gt + �⊤D�t+1 − s

1
t
}
] = 1, (58)

A.4



so we obtain

Et [exp
{
−rf −

1
2
�2t (�

⊤
� Σ��)

2 − �t�⊤� �t+1 + gt + �
⊤
D�t+1 − s

1
t

}

] = 1. (59)

We conjecture
s1t = A1 + B1yt + C1zt .

Substituting this conjecture, the speci�cation of gt , and the speci�cation of �t into the no-arbitrage
condition, we obtain

Et [exp
{
−rf −

1
2
(� + yt)2(�⊤� Σ��)

2 − (� + yt)�⊤� �t+1 + zt + g −
1
1
�⊤DΣ�D + �

⊤
D�t+1 − A1 − B1yt − C1zt

}

] = 1.

Using the moment-generating function to simplify the expression, we obtain

exp
{
−rf + zt + g − A1 − B1yt − C1zt − �⊤� Σ�D(� + yt)

}
= 1. (60)

For the conjecture of s1t functional form to hold, the coe�cient of zt and the coe�cient of yt must
be zero, so we obtain

C1 = 1, (61)

and
B1 = −�⊤� Σ�D . (62)

Finally, the constant terms add up to zero, so we obtain

A1 = g − rf − �⊤� Σ�D� (63)

Finally, we solve the conditional expected market return. First, we start with Et[rt+1] =
�0 + �1Et[pdt+1] − pdt + gt . Using the expression of pdt+1, pdt , and gt , and the speci�cations of law
of motion of zt and yt , we obtain

Et[rt+1] =�0 − (1 − �1)A + g −
1
2
�⊤DΣ�D − (1 − �1�y)Byt . (64)

We collect the constant terms into Aer and de�ne the coe�cient of yt to be Ber .

I.4 Proof of Proposition 3 on �z and return forecasting errors
Proof. We know that the expected return is a function of the price of risk yt :

Et[rt+1] = Aer + Beryt ,

and that
drt = Apd − A1 + (Bpd − B1)yt + (Cpd − C1)zt .
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Combining the two equations, we have

Et[rt+1] = Aer +
Ber

B1 − Bpd
[drt − Apd + A1 − (Cpd − C1)zt] (65)

= const. + Ber
B1 − Bpd

[drt − (Cpd − C1)zt] (66)

If �z = 0, Et[rt+1] = const. + Ber
B1−Bpd

drt . The forecast error is a white noise independent of
time-t variables:

�t+1 = rt+1 − Et[rt+1] = �t+1.

However, if �z ≠ 0 but the investor still uses equation (66) to forecast t + 1 return, the forecast
error is then

�t+1 = rt+1 − [const. + Ber
B1 − Bpd

drt] = rt+1 − [Et[rt+1] +
Ber (Cpd − C1)
B1 − Bpd

zt]

= �t+1 −
Ber (Cpd − C1)
B1 − Bpd

zt = �t+1 −
Ber

B1 − Bpd (
1

1 − �1�z
− 1) zt .

The correlation between �̂z,t and �t+1 is therefore

Corr(�z,t , �t+1) = −
Ber

B1 − Bpd
Corr (�z,t , (

1
1 − �1�z,t

− 1) zt)

Based on our �ndings on return predictability, drt negatively predicts future returns. Therefore,
the coe�cient of drt in equation (66), Ber

B1−Bpd
, is negative. Under this condition, we obtain

sgn (Corr(�z,t , �t+1)) = sgn(Cov (�z,t , (
1

1 − �1�z,t
− 1) zt))

= sgn(E(
�1�2z,tzt
1 − �1�z,t)

− E (�z,t) E(
�1�z,tzt
1 − �1�z,t))

As demonstrated by the rolling estimation results in Table 8 in Section 4.3, �z,t on average is close
to zero (see also Table 8, we have E (�̂z,t) ≈ 0. Using 1-year earnings growth forecasts from IBES
Global Aggregate (IGA) as a proxy for zt and �1 = 0.98, we calculate the estimate of E(

�1�̂2z,tzt
1−�1�̂z,t)

in our sample to be 0.005626 with p-value < 0.01, which implies

sgn (Corr(�z,t , �t+1)) = sgn(E(
�1�2z,tzt
1 − �1�z,t)) > 0.
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I.5 Deriving the Sharpe ratio of market-timing strategy
Following Campbell and Thompson (2008), we assume that the excess return can be decomposed
as follows:

rt+1 = � + xt + "t+1
where � is the unconditional mean. The predictor xt has mean 0 and variance � 2x , independent
from the error term "t+1. For simplicity, we assume that the mean-variance investor has a relative
risk aversion coe�cient 
 = 1. When using xt to time the market, the investor allocates

�t =
� + xt
� 2"

to the risky asset and on average earns an excess return of

E (�trt+1) = E(
(� + xt) (� + xt + "t+1)

� 2" ) =
�2 + � 2x
� 2"

The variance of the market-timing strategy is

Var (�trt+1) = Var [
(� + xt) (� + xt + "t+1)

� 2" ]

The (squared) market-timing Sharpe ratio s21 can be written as

s21 =
[E (�trt+1)]2

Var (�trt+1)
= A ⋅

�2 + � 2x
� 2"

where A is a constant that depends on Var [(� + xt) (� + xt + "t+1)] and (�2 + � 2x )/� 2" .
Given the buy-and-hold Sharpe ratio s0,

s20 =
�2

� 2x + � 2"

and the predictive regression R2,

R2 =
� 2x

� 2x + � 2"
,

we obtain the relationship between the buy-and-hold and market-timing Sharpe ratios as

s21 = A ⋅
�2 + � 2x
� 2"

= A ⋅
�2 + � 2x

(� 2x + � 2" ) (1 − R2)
= A ⋅

s20 + R2

1 − R2

When the predictor has no predictive power, we know that R2 = 0 and s0 = s1. We therefore pin
down the constant A = 1 and obtain

s1 =

√
s20 + R2

1 − R2
. (67)
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Using data back to 1871, Campbell and Thompson (2008) obtain a long-term estimate of the
market buy-and-hold Sharpe ratio (“s0”) of 0.37 (annualized). If a mean-variance investor uses the
information from dr to construct a market-timing strategy, with an out-of-sample R2 of 14.6%,
she would obtain a Sharpe ratio (“s1”) of 0.58, representing a 54.7% improvement over the Sharpe
ratio achieved by the buy-and-hold approach.
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Appendix II: Additional Tables and Figures
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Figure A.1 Spectrum and Cross-spectrum of dr and pd (Daily Frequency).
The left panel shows the estimated spectral densities of drt , pdt , and the residuals of drt after projecting on pdt (�prt ).
The integral of spectral density is equal to the variance. The horizontal line starts from zero and ends at � , but is
labeled with the corresponding length of a cycle. The right panel shows the cross-spectral density between drt and
pdt . The integral of cross-spectral density is equal to the covariance.
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Table A.1 Predicting One-year Dividend Growth Using Di�erent Combinations of Scaled Dividend
Prices
This table reports results from one-year dividend growth predictive regressions of the S&P 500 Index. The predictors
are various combinations of scaled dividend prices, which include our main predictor dr , the price-dividend ratio
pd , short-term (0.5- and 1-year) dividend strip price to dividend ratio (pd0.5 and pd1), long-term (beyond 1-year)
dividend strip price to dividend ratio (pd1+), Each column corresponds to one separate predictive regression. Data
sample: 1988:01–2019:12.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
log(Dt+1/Dt)

dr -0.04 0.02 0.09 -0.18∗∗∗ -0.18∗∗∗
(0.03) (0.04) (0.06) (0.06) (0.06)

pd 0.07 0.10 7.70 0.28∗∗ 0.11∗
(0.07) (0.07) (5.60) (0.12) (0.06)

pd0.5 -0.02 0.14∗∗ 0.14∗∗ 0.14∗ -0.04 -0.04
(0.03) (0.06) (0.06) (0.08) (0.03) (0.03)

s1 0.17∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.27∗∗ 0.26∗∗∗ 0.26∗∗∗
(0.06) (0.06) (0.06) (0.11) (0.07) (0.07)

pd1+ 0.07 0.10 -7.48 0.28∗∗ 0.11∗
(0.06) (0.06) (5.41) (0.12) (0.06)

Intercept 0.21 0.07∗∗∗ -0.09 -0.10 0.09 -0.29 -0.30 -0.27 -0.96 -0.28 -0.31 -0.35 -0.36
(0.19) (0.02) (0.21) (0.22) (0.11) (0.24) (0.25) (0.22) (0.88) (0.23) (0.24) (0.22) (0.22)

N 372 372 372 372 372 372 372 372 372 372 372 372 372
R2 0.06 0.27 0.26 0.26 0.20 0.37 0.37 0.36 0.21 0.38 0.38 0.41 0.41

log(Dt+1/Dt)
dr 0.10∗ -0.26∗∗∗ -0.25∗∗∗ -0.21∗∗∗ -0.23∗∗∗ -0.16∗∗∗ -0.23∗∗∗ -0.24∗∗∗ -0.25∗∗∗ -0.24∗∗∗

(0.05) (0.07) (0.07) (0.05) (0.06) (0.04) (0.04) (0.05) (0.06) (0.07)

pd 3.81 0.37∗∗∗ 1.90 0.33∗∗∗ 2.05 0.36 0.35∗∗∗ 0.71 2.25
(4.26) (0.11) (3.56) (0.12) (3.37) (2.96) (0.10) (2.76) (3.39)

pd0.5 -0.04 0.10∗∗ -0.03 -0.04 -0.04 -0.04 -0.04 -0.04
(0.03) (0.04) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

s1 0.35∗∗∗ 0.16∗∗∗ -0.02 -0.05∗∗ 0.25∗∗∗ 0.03 0.02 -0.08
(0.11) (0.04) (0.05) (0.02) (0.06) (0.05) (0.05) (0.05)

pd1+ -3.65 0.36∗∗∗ -1.76 0.30∗∗∗ -1.74 -0.25 0.34∗∗∗ -0.34 -1.87
(4.11) (0.11) (3.43) (0.10) (3.25) (2.86) (0.09) (2.66) (3.22)

Intercept -0.34∗ -0.54 -0.33∗ -0.37∗ -0.49 -0.28 -0.31 -0.50 -0.39 -0.34 -0.37∗ -0.41 -0.52
(0.20) (0.68) (0.20) (0.21) (0.58) (0.24) (0.24) (0.55) (0.48) (0.21) (0.21) (0.45) (0.54)

N 372 372 372 372 372 372 372 372 372 372 372 372 372
R2 0.40 0.29 0.42 0.43 0.38 0.38 0.38 0.39 0.41 0.42 0.42 0.42 0.39
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Table A.2 Predicting One-year Returns Using Di�erent Combinations of Scaled Dividend Prices
This table reports results from one-year return predictive regressions of the S&P 500 Index. The predictors are our
main predictor dr , and various combinations of scaled dividend prices, which include the price-dividend ratio pd ,
short-term (0.5- and 1-year) dividend strip price to dividend ratio (pd0.5 and pd1), long-term (beyond 1-year) dividend
strip price to dividend ratio (pd1+), Each column corresponds to one separate predictive regression. Data sample:
1988:01–2019:12.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

rt+1
dr -0.16∗∗∗

(0.04)

pd -0.20∗∗ -0.14∗ -0.09 7.54 -0.07 1.44 -1.41 -5.40
(0.10) (0.08) (0.10) (8.81) (0.11) (6.81) (7.65) (7.44)

pd0.5 -0.14∗∗ 0.18∗∗ 0.18∗∗ -0.13∗ -0.13∗ 0.16∗∗ -0.12
(0.07) (0.09) (0.09) (0.07) (0.07) (0.08) (0.08)

s1 0.49∗∗∗ 0.23∗∗ 0.23∗∗ 0.43∗∗ 0.43∗∗ 0.24∗∗∗ 0.50∗∗∗
(0.12) (0.10) (0.10) (0.18) (0.18) (0.06) (0.15)

pd1+ -0.13∗ -0.09 -7.53 -0.07 -1.54 1.29 5.22
(0.07) (0.09) (8.55) (0.11) (6.59) (7.41) (7.19)

Intercept 0.73∗∗∗ 0.87∗∗ 0.05 0.76∗∗∗ 0.77∗∗∗ 0.47 0.48 -0.11 0.31 0.32 0.58 0.62 0.89
(0.13) (0.36) (0.05) (0.26) (0.27) (0.36) (0.38) (1.24) (0.44) (0.46) (1.01) (1.15) (1.20)

N 372 372 372 372 372 372 372 372 372 372 372 372 372
R2 0.25 0.14 0.31 0.23 0.23 0.26 0.26 0.18 0.32 0.32 0.22 0.26 0.33
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Table A.3 Forecasting Macroeconomic Variables with Market Duration and Valuation Ratios
This table reports the R2 of predicting one-year-ahead macroeconomic variables using predictors (dr , pd , and s1)
that contain information about the underlying state variables. The macroeconomic variables are divided into four
categories. 1) Macroeconomic: nominal GDP Growth, Industrial Production Growth (“IP Growth”), Chicago Fed
National Activity Index (“CFNAI"), Unemployment Rate, Real Consumption Growth, Total Business Inventories,
Nonresidential Fixed Investment (nominal), Residential Fixed Investment (nominal), and GDP De�ator are all from
FRED database. 2) Financial: Term Spread and Default Spread (“Baa-Aaa") are from FRED; Gilchrist-Zakrajšek credit
spread (GZ Credit Spread) is from Gilchrist and Zakrajs̆ek (2012); CAPE is the cyclically adjusted price-earnings ratio
from Robert Shiller’s website; cay is from Lettau and Ludvigson (2001). 3) Intermediary: Broker/Dealer leverage (“B/D
Leverage") is from Adrian, Etula, and Muir (2014); Broker/Dealer 1(5) year average CDS spreads (“B/D 1(5) Year Avg.
CDS") is from Gilchrist and Zakrajs̆ek (2012); ROA of banks (“ROA Banks") is from FRED. 4) Uncertainties: CBOE
1-month VIX index (“VIX") and Chauvet and Piger (2008)’s smoothed U.S. recession probabilities estimates for given
month (“CP Recession") are from FRED; Economics policy uncertainties (“EPU") is from Baker, Bloom, and Davis
(2016); Survey of Professional Forecasters recession probability estimates (“SPF Recession") is from the Philadelphia
Fed. 5) Sentiments: Sentiment Index (both raw and orthogonalized against several macro variables), Number of IPOs
(“IPO #") and close-end fund NAV discount (“Close-end Discount") are all from Baker and Wurgler (2006).

dr + pd dr pd dr + s1 s1

Macroeconomic:
GDP Growth 0.222 0.061 0.000 0.224 0.178
IP Growth 0.202 0.062 0.001 0.203 0.167
Unemployment Growth 0.335 0.062 0.001 0.325 0.229
Real Consumption Growth 0.241 0.019 0.121 0.241 0.208
Business Inventories Growth 0.383 0.114 0.000 0.377 0.304
Nonres. Fixed Investment Growth 0.366 0.055 0.005 0.361 0.240
CPI Growth 0.311 0.227 0.311 0.302 0.071

Financial:
Baa-Aaa 0.081 0.044 0.008 0.081 0.078
GZ Credit Spread 0.321 0.318 0.218 0.321 0.259
Term Spread 0.122 0.001 0.039 0.120 0.023
CAPE 0.474 0.300 0.465 0.478 0.062
cay 0.072 0.042 0.069 0.071 0.008

Intermediary:
B/D Leverage 0.313 0.290 0.296 0.308 0.151
B/D 1 Year Avg. CDS 0.284 0.052 0.106 0.284 0.283
B/D 5 Year Avg. CDS 0.393 0.020 0.231 0.393 0.383
ROA Banks 0.403 0.080 0.275 0.388 0.002

Uncertainties:
VIX 0.145 0.134 0.068 0.144 0.131
EPU 0.049 0.002 0.005 0.047 0.022
CP Recession 0.063 0.030 0.004 0.063 0.059
SPF Recession 0.194 0.017 0.008 0.191 0.109

Sentiments:
Sentiment Index 0.131 0.131 0.099 0.131 0.094
Sentiment Index (orth.) 0.113 0.109 0.102 0.113 0.062
IPO # 0.144 0.142 0.093 0.144 0.120
Close-end Discount 0.123 0.109 0.119 0.118 0.054
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Table A.4 Kostakis, Magdalinos, and Stamatogiannis (2014) IVX-Wald Test
This table reports test results on the predictive coe�cient � in Table (2). IVX-Wald is the Wald statistic from Kostakis,
Magdalinos, and Stamatogiannis (2014) to testH0 ∶ � = 0 againstH1 ∶ � ≠ 0. p-value of the IVX-Wald test is shown in
the parentheses. The test is designed to be robust to the persistence of the predictor. *, **, and *** indicate signi�cance
at the 10%, 5%, and 1% levels, respectively.

drt pdt �Ft KPt

IVX-Wald 9.29∗∗∗ 1.56 2.77∗ 5.74∗∗
p-value (0.002) (0.212) (0.096) (0.017)
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Table A.5 Annual Excess Return Prediction
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the excess return
of the S&P 500 index in the next twelve months. We consider four right-hand side variables (i.e., predictors), drt ,
pdt , �ltered series for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor
extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is shown
followed by Newey and West (1987) t-statistic (with 18 lags), Hodrick (1992) t-statistic, the coe�cient adjusted for
Stambaugh (1999) bias, and the in-sample adjusted R2. We run the regression monthly. Starting from December
1997, we form out-of-sample forecasts of return in the next twelve months by estimating the regression with data
up to the current month and use the forecasts to calculate out-of-sample R2, ENC test (Clark and McCracken, 2001),
and the p-value of CW test (Clark and West, 2007). Data sample: 1988:01–2019:12.

ret+1
(1) (2) (3) (4) (5)

drt -0.146 -0.228
Hodrick t [-3.178] [-2.945]
Newey-West t (-3.867) (-3.571)
Stambaugh bias adjusted � -0.136

pdt -0.180 0.161
[-2.168] [1.820]
(-2.262) (1.286)
-0.170

�Ft 2.293
[2.033]
(2.205)
2.303

KPt 0.827
[2.715]
(2.429)
0.837

N 384 384 384 384 384
R2 0.219 0.114 0.124 0.128 0.241
OOS R2 0.098 -0.040 -0.096 0.005 0.138
ENC 1.924 0.296 0.021 2.175 4.539
p(ENC) <0.10 >0.10 >0.10 <0.05 <0.05
p(CW) 0.058 0.379 0.493 0.072 0.028
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Table A.6 Annual Return Prediction: Fama-French Market Return
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the market return
in the next twelve months from Fama-French. We consider four right-hand side variables (i.e., predictors), drt ,
pdt , �ltered series for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor
extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is shown
followed by Newey and West (1987) t-statistic (with 18 lags), Hodrick (1992) t-statistic, the coe�cient adjusted for
Stambaugh (1999) bias, and the in-sample adjusted R2. We run the regression monthly. Starting from December
1997, we form out-of-sample forecasts of return in the next twelve months by estimating the regression with data
up to the current month and use the forecasts to calculate out-of-sample R2, ENC test (Clark and McCracken, 2001),
and the p-value of CW test (Clark and West, 2007). Data sample: 1988:01–2019:12.

rMKT
t+1

(1) (2) (3) (4) (5)

drt -0.154 -0.222
Hodrick t [-3.233] [-2.772]
Newey-West t (-4.464) (-3.511)
Stambaugh bias adjusted � -0.144

pdt -0.198 0.133
[-2.302] [1.608]
(-2.706) (1.129)
-0.188

�Ft 2.486
[2.327]
(2.656)
2.496

KPt 0.794
[2.223]
(2.689)
0.805

N 384 384 384 384 384
R2 0.236 0.134 0.141 0.128 0.251
OOS R2 0.144 0.022 -0.023 -0.001 0.181
ENC 3.083 0.963 0.598 2.483 6.163
p(ENC) <0.05 >0.10 >0.10 <0.05 <0.01
p(CW) 0.017 0.166 0.321 0.048 0.019
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Table A.7 Annual Return Prediction: Fama-French Market Excess Return
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the market excess
return in the next twelve months from Fama-French. We consider four right-hand side variables (i.e., predictors), drt ,
pdt , �ltered series for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor
extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is shown
followed by Newey and West (1987) t-statistic (with 18 lags), Hodrick (1992) t-statistic, the coe�cient adjusted for
Stambaugh (1999) bias, and the in-sample adjusted R2. We run the regression monthly. Starting from December
1997, we form out-of-sample forecasts of return in the next twelve months by estimating the regression with data
up to the current month and use the forecasts to calculate out-of-sample R2, ENC test (Clark and McCracken, 2001),
and the p-value of CW test (Clark and West, 2007). Data sample: 1988:01–2019:12.

rMKT ,e
t+1

(1) (2) (3) (4) (5)

drt -0.144 -0.222
Hodrick t [-3.060] [-2.791]
Newey-West t (-3.745) (-3.503)
Stambaugh bias adjusted � -0.134

pdt -0.179 0.153
[-2.108] [1.704]
(-2.199) (1.202)
-0.169

�Ft 2.192
[2.075]
(2.057)
2.203

KPt 0.725
[2.044]
(2.251)
0.735

N 384 384 384 384 384
R2 0.206 0.108 0.109 0.105 0.225
OOS R2 0.099 -0.018 -0.081 -0.037 0.140
ENC 2.000 0.376 -0.047 1.700 4.656
p(ENC) <0.10 >0.10 >0.10 <0.10 <0.05
p(CW) 0.047 0.349 0.485 0.120 0.027

A.16



d
r

S
II

K
P µ
F

d
y

p
d ik

b
m

S
V

IX n
ti

s

ep

tm
s

in
fl d
e

tb
l

d
fy

ca
y

d
fr lt
y

lt
r

sv
ar cs
p

0

5

10

15

20

IS R2

d
r ik

K
P

in
fl

b
m lt
r

tm
s

S
V

IX ep d
fr

n
ti

s

p
d

d
y

tb
l

µ
F

ca
y d
e

sv
ar lt
y

cs
p

S
II

d
fy

−20

−15

−10

−5

0

5

10

OOS R2

d
r

K
P d
y

S
V

IX p
d µ
F

b
m S
II

in
fl ik

tm
s

ep d
e

n
ti

s

tb
l

d
fr lt
r

d
fy

ca
y

sv
ar lt
y

cs
p

0

1

2

3

4
NW t-stat

d
r

K
P

in
fl

d
y

µ
F

p
d

b
m S
II

S
V

IX ep ik

tm
s

n
ti

s

d
fr lt
r

d
e

tb
l

d
fy

ca
y

lt
y

sv
ar cs
p

0.0

0.5

1.0

1.5

2.0

2.5

Hodrick t-stat

Figure A.2 Comparison with Alternative Return Predictors: Excess Return.
This graph compares the 1-year return predictive power between drt and other commonly studied predictors in our
sample period. Panel A reports the in-sample adjusted R2. Panel B reports the out-of-sample R2. Negative out-of-
sample R2 indicates that the predictive power is below the historical mean. Panel C reports the absolute values of
Newey and West (1987) t-statistic (with an 18-month lag). Panel D reports the absolute values of Hodrick (1992)
t-statistic. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default
yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-section premium (csp), the dividend payout
ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the
dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm),
the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and
the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg, and Zhou
(2016) (1988-2014). SVIX is an option-implied lower bound of the 1-year equity premium from Martin (2017) (1996-
2012). KP is the single predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). BK is the �ltered series for expected returns following Binsbergen and Koijen (2010).
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Figure A.3 Comparison with Alternative Return Predictors: Fama-French Market Return.
This graph compares the 1-year return predictive power between drt and other commonly studied predictors in our
sample period. Panel A reports the in-sample adjusted R2. Panel B reports the out-of-sample R2. Negative out-of-
sample R2 indicates that the predictive power is below the historical mean. Panel C reports the absolute values of
Newey and West (1987) t-statistic (with an 18-month lag). Panel D reports the absolute values of Hodrick (1992)
t-statistic. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default
yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-section premium (csp), the dividend payout
ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the
dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm),
the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and
the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg, and Zhou
(2016) (1988-2014). SVIX is an option-implied lower bound of the 1-year equity premium from Martin (2017) (1996-
2012). KP is the single predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). BK is the �ltered series for expected returns following Binsbergen and Koijen (2010).
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Figure A.4 Comparison with Alternative Return Predictors: Fama-French Market Excess Return.
This graph compares the 1-year return predictive power between drt and other commonly studied predictors in our
sample period. Panel A reports the in-sample adjusted R2. Panel B reports the out-of-sample R2. Negative out-of-
sample R2 indicates that the predictive power is below the historical mean. Panel C reports the absolute values of
Newey and West (1987) t-statistic (with an 18-month lag). Panel D reports the absolute values of Hodrick (1992)
t-statistic. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default
yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-section premium (csp), the dividend payout
ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the
dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm),
the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and
the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg, and Zhou
(2016) (1988-2014). SVIX is an option-implied lower bound of the 1-year equity premium from Martin (2017) (1996-
2012). KP is the single predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). BK is the �ltered series for expected returns following Binsbergen and Koijen (2010).
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Figure A.5 Comparison with Alternative Return Predictors.
This graph compares the 1-year return predictive power between drt and other commonly studied predictors in our
sample period. Panel A reports the in-sample adjusted R2. Panel B reports the out-of-sample R2. Negative out-of-
sample R2 indicates that the predictive power is below the historical mean. Panel C reports the absolute values of
Newey and West (1987) t-statistic (with an 18-month lag). Panel D reports the absolute values of Hodrick (1992)
t-statistic. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default
yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-section premium (csp), the dividend payout
ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the
dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm),
the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and
the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg, and Zhou
(2016) (1988-2014). SVIX is an option-implied lower bound of the 1-year equity premium from Martin (2017) (1996-
2012). KP is the single predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). BK is the �ltered series for expected returns following Binsbergen and Koijen (2010).
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Table A.8 One-month Return Prediction
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the return of the
S&P 500 index in the next month. We consider four right-hand side variables (i.e., predictors), drt , pdt , �ltered series
for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor extracted from 100
book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is reported, followed by Hodrick
(1992) t-statistic, OLS t-statistic, the coe�cient adjusted for Stambaugh (1999) bias, and the in-sample adjusted R2.
We run the regression monthly. Starting from December 1997, we form out-of-sample forecasts of return in the next
twelve months by estimating the regression with data up to the current month and use the forecasts to calculate
out-of-sample R2, ENC test (Clark and McCracken, 2001), and the p-value of CW test (Clark and West, 2007). Data
sample: 1988:01–2019:12

rt+1/12
(1) (2) (3) (4) (5)

Intercept 0.056 0.067 0.017 0.018 0.036
[3.031] [2.163] [4.198] [1.203] [0.893]
(3.302) (2.385) (4.158) (1.251) (1.130)

drt -0.012 -0.017
Hodrick t [-2.529] [-1.427]
Newey-West t (-2.826) (-2.034)

pdt -0.015 0.011
[-1.891] [0.530]
(-2.090) (0.751)

�Ft 0.211
[2.224]
(2.401)

KPt 0.019
[0.656]
(0.680)

R2 0.021 0.011 0.015 0.001 0.022
OOS R2 0.015 0.004 0.007 -0.012 0.005
ENC 2.678 1.122 1.673 -0.676 2.384
p(ENC) <0.05 >0.10 <0.10 >0.10 <0.10
p(CW) 0.018 0.179 0.122 0.325 0.129
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Table A.9 One-month Excess Return Prediction
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the excess return
of the S&P 500 index in the next month. We consider four right-hand side variables (i.e., predictors), drt , pdt , �ltered
series for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor extracted
from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is reported, followed
by Hodrick (1992) t-statistic, OLS t-statistic, the coe�cient adjusted for Stambaugh (1999) bias, and the in-sample
adjusted R2. We run the regression monthly. Starting from December 1997, we form out-of-sample forecasts of return
in the next twelve months by estimating the regression with data up to the current month and use the forecasts to
calculate out-of-sample R2, ENC test (Clark and McCracken, 2001), and the p-value of CW test (Clark and West,
2007). Data sample: 1988:01–2019:12

ret+1/12
(1) (2) (3) (4) (5)

Intercept 0.051 0.059 0.013 0.014 0.026
[2.757] [1.878] [3.328] [0.901] [0.644]
(3.016) (2.080) (3.316) (0.938) (0.814)

drt -0.011 -0.018
Hodrick t [-2.394] [-1.504]
Newey-West t (-2.684) (-2.134)

pdt -0.014 0.014
[-1.687] [0.670]
(-1.873) (0.944)

�Ft 0.188
[1.967]
(2.137)

KPt 0.015
[0.514]
(0.535)

R2 0.019 0.009 0.012 0.001 0.021
OOS R2 0.012 0.001 0.003 -0.013 0.003
ENC 2.338 0.670 1.060 -0.766 2.233
p(ENC) <0.05 >0.10 >0.10 >0.10 <0.10
p(CW) 0.038 0.283 0.228 0.302 0.159
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Table A.10 One-month Return Prediction: Fama-French MKT Return
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the return of the
S&P 500 index in the next month. We consider four right-hand side variables (i.e., predictors), drt , pdt , �ltered series
for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor extracted from 100
book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is reported, followed by Hodrick
(1992) t-statistic, OLS t-statistic, the coe�cient adjusted for Stambaugh (1999) bias, and the in-sample adjusted R2.
We run the regression monthly. Starting from December 1997, we form out-of-sample forecasts of return in the next
twelve months by estimating the regression with data up to the current month and use the forecasts to calculate
out-of-sample R2, ENC test (Clark and McCracken, 2001), and the p-value of CW test (Clark and West, 2007). Data
sample: 1988:01–2019:12

rMKT
t+1/12

(1) (2) (3) (4) (5)

Intercept 0.056 0.067 0.017 0.018 0.037
[2.833] [2.086] [4.070] [1.117] [0.891]
(3.207) (2.332) (4.029) (1.185) (1.125)

drt -0.012 -0.017
Hodrick t [-2.354] [-1.330]
Newey-West t (-2.742) (-1.945)

pdt -0.015 0.011
[-1.819] [0.488]
(-2.044) (0.697)

�Ft 0.208
[2.091]
(2.306)

KPt 0.018
[0.588]
(0.626)

R2 0.019 0.011 0.014 0.001 0.021
OOS R2 0.012 0.003 0.005 -0.014 0.003
ENC 2.227 0.876 1.275 -1.009 1.869
p(ENC) <0.05 >0.10 <0.10 >0.10 >0.10
p(CW) 0.034 0.220 0.171 0.220 0.176
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Table A.11 One-month Return Prediction: Fama-French MKT excess Return
This table reports the results of predictive regression (equation (16)). The left-hand side variable is the excess return
of the S&P 500 index in the next month. We consider four right-hand side variables (i.e., predictors), drt , pdt , �ltered
series for expected returns following Binsbergen and Koijen (2010) �F , and the single predictive factor extracted
from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) KP . The � estimate is reported, followed
by Hodrick (1992) t-statistic, OLS t-statistic, the coe�cient adjusted for Stambaugh (1999) bias, and the in-sample
adjusted R2. We run the regression monthly. Starting from December 1997, we form out-of-sample forecasts of return
in the next twelve months by estimating the regression with data up to the current month and use the forecasts to
calculate out-of-sample R2, ENC test (Clark and McCracken, 2001), and the p-value of CW test (Clark and West,
2007). Data sample: 1988:01–2019:12

rMKT ,e
t+1/12

(1) (2) (3) (4) (5)

Intercept 0.051 0.059 0.013 0.013 0.027
[2.576] [1.810] [3.221] [0.828] [0.646]
(2.926) (2.034) (3.208) (0.880) (0.816)

drt -0.011 -0.018
Hodrick t [-2.228] [-1.402]
Newey-West t (-2.602) (-2.042)

pdt -0.014 0.013
[-1.621] [0.623]
(-1.830) (0.885)

�Ft 0.185
[1.844]
(2.049)

KPt 0.014
[0.453]
(0.484)

R2 0.017 0.009 0.011 0.001 0.019
OOS R2 0.010 0.000 0.001 -0.014 0.001
ENC 1.903 0.443 0.699 -1.082 1.718
p(ENC) <0.10 >0.10 >0.10 >0.10 >0.10
p(CW) 0.065 0.340 0.297 0.205 0.209
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Table A.12 Correlations with Other Return Predictors
This table shows the correlations of alternative return predictors with both drt and pdt from 1988 to 2019. �F is
the �ltered demeaned expected return following Binsbergen and Koijen (2010). KP is a predictive factor extracted
from 100 book-to-market and size portfolios from Kelly and Pruitt (2013). Most alternative predictors are from Goyal
and Welch (2007) that include the default yield spread (dfy), the in�ation rate (in�), stock variance (svar), the cross-
section premium (csp), the dividend payout ratio (de), the long-term yield (lty), the term spread (tms), the T-bill
rate (tbl), the default return spread (dfr), the dividend yield (dy, log di�erence between current-period dividend and
lagged S&P 500 index price), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market
ratio (bm), the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio
(eqis), and the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg,
and Zhou (2016) (1988-2014). SVIX is an option-implied lower bound of 1-year equity premium from Martin (2017)
(1996-2012). ZCB1Y is the one-year zero-coupon bond yield from Fama-Bliss.

dr pd

pd 0.873 1.000
�F -0.892 -0.967
KP -0.565 -0.496
SII 0.047 -0.015
SVIX 0.055 -0.304
bm -0.778 -0.826
cay -0.364 -0.377
csp 0.345 0.428
de -0.245 -0.463
dfr -0.024 0.005
dfy -0.078 -0.273
dr 1.000 0.873
dy -0.879 -0.990
ep -0.558 -0.453
ik 0.664 0.657
in� -0.100 -0.074
ltr -0.000 -0.056
lty -0.368 -0.425
ntis -0.074 0.076
svar 0.149 -0.053
tbl -0.175 -0.243
tms -0.255 -0.217
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Figure A.6 Rolling Estimate of Expected Growth Persistence and Return Prediction Errors: OOS
This �gure plots the rolling estimate of the autoregressive coe�cient of expected cash �ow growth, �̂z,t , and the
return prediction errors using market duration (drt ) as the predictor. �̂z,t is estimated using analyst forecasts of S&P
500 aggregate earnings in rolling regressions with a three-year window. This �gure also plots the out-of-sample
forecast errors �̂t , which is calculated as the di�erence between the realized one-year S&P 500 return and the one-
period-ahead return forecast using drt as the predictor. The �rst out-of-sample forecast starts in 1998. The correlation
between the two time series is also reported on the graph. Our monthly sample is 1988:01–2019:12.
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Table A.13 Time-varying �z and Return Predictability
This table reports results from regressions that link return predictability from Duration (drt ) to the time-varying ex-
pected cash-�ow growth persistence (�̂z ). The dependent variables are in-sample residuals ("t ) from return predictive
regressions (column 1) and out-of-sample return forecast errors (column 2). The independent variable is the time-
varying expected cash-�ow growth persistence (�̂z ), estimated in three-year rolling windows. t-statistics calculated
based on Newey-West standard errors with 18 lags are reported in parentheses. Data sample: 1988:01–2019:12.

"̂t �t

Intercept -0.011 -0.046
(-1.127) (-4.076)

�̂z,t 0.556 0.469
(5.143) (4.599)

N 252 252
R2 0.173 0.094
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Figure A.7 �z Estimates from the State-Space Model with Correlated Shocks. This �gure reports the ex-
pected dividend growth autoregressive coe�cient �z point estimates in unrestricted state-space models as
in Section 2 with di�erent correlations of Δd and z shocks. The correlations of Δd and z shocks range from
-0.9 to 0.9 and the volatility of Δd shock is calibrated to the estimated �̂D from the state-space model with
uncorrelated shocks. Panel A uses the annual dividend growth (non-overlapping) of the S&P 500 index,
and Panel B uses the annual dividend growth (non-overlapping) of the Fama-French market portfolio.
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Figure A.8 Out-of-sample R2 by Sample Split Date.
This graph reports the out-of-sample R2 of 1-year return prediction with di�erent sample split dates. The �rst and
last out-of-sample split dates are Jan 1993 and Jun 2015, respectively.
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C. IGA earnings growth between years 2 and 3 Δet+3

Figure A.9 R2 from Earnings Growth Predictive Regressions at Various Horizons with Bootstrapped
Con�dence Interval.
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