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Abstract

The circulation of deposits as means of payment churns reserves—the settlement assets—

among banks. A bank’s position in the network of payment flows determines its liquidity risk

from depositors’ payment activities and its willingness to fund illiquid loans with deposits.

We develop a model of liquidity percolation in the payment system and a modern version of

money multiplier that links the payment-induced redistribution of liquidity and equilibrium

level of bank credit funded by deposits. Using transaction-level data on payment settlement,

we estimate the model and identify a subset of banks that have disproportionately large impact

on the equilibrium outcome due to their systemically importance in the payment network.
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1 Introduction

At the core of a financial system is credit and money creation by the banking sector (Gurley and
Shaw, 1960). When extending loans, banks credit borrowers’ accounts with newly issued deposits,
engaging in a debt swap: The bank acquires the borrower’s debt (loan) and issues debt (deposits)
that the borrower holds as money (Wicksell, 1907; Cavalcanti and Wallace, 1999; Kiyotaki and
Moore, 2002; Kahn and Roberds, 2007; Piazzesi and Schneider, 2016; Donaldson et al., 2018).
This process expands the supply of money within the private sector, “inside money” (Lagos, 2008).

It may appear that banks possess the ability to create money ex nihilo because of the special
status of their liabilities as means of payment. However, as noted by Tobin (1963), banks’ capacity
to issue liabilities cannot be infinite in equilibrium, akin to other firms. What factors limit credit
and money creation by banks? The answer also resides in the special status of deposits as money.

When the loan borrower turns the newly issued deposits into purchasing power, the bank
faces three scenarios. First, the borrower withdraws cash, causing the bank to lose reserves. Second
and more often, the borrower electronically pays depositors at other banks. The bank loses reserves
and deposits to the payment recipients’ banks (McLeay et al., 2014). Lastly, should the recipients
also be depositors at the lending bank, the bank simply alters the deposit ownership but still faces
liquidity loss if the new deposit owners’ payment needs trigger the first or second scenario.

Therefore, there is a liquidity constraint on credit and money creation: The ratio of bank
lending funded by deposit issuance to liquidity buffer—the money multiplier—cannot be over-
stretched. Our notion of money multiplier differs from the traditional deposits/reserves ratio. What
matters is not total deposits but the liquidity property of assets funded by deposits. Issuing deposits
to acquire liquid assets is not subject to the liquidity constraint because payment outflows can be
covered by selling the acquired liquid assets. In contrast, issuing deposits to fund loans requires
the bank to have other (liquid) assets that buffer payment outflows because the loans are illiquid.

The money multiplier depends crucially on the liquidity churn among banks. In the second
scenario of interbank electronic payment, the payment sender’s bank loses reserves while the re-
cipients’ banks gain reserves. With more liquidity, the recipients’ banks may decide to fund loans
with deposits, and some of these newly issued deposits are then used in payment, sent to other
banks and bringing along reserves. This mechanism results in a ripple effect of reserve perco-
lation across banks. Such liquidity churn is large in magnitude. The average weekly volume in
Fedwire—the primary payment settlement system in the U.S.—exceed GDP.

1



In summary, banks face a liquidity concern in credit and money creation but the liquidity
inflows from other banks relax the liquidity constraint. The problem is that when individual banks
fund loans with deposits, they do not take in to account the liquidity spillover to other banks as a
result of their depositors paying depositors at other banks. This liquidity spillover effect leads to
strategic complementarity: A bank extends more loans funded by deposits when it receives liquid-
ity inflows that result from the rest of banking sector extending more loans funded by deposits.

We develop a model that captures this mechanism. Built upon insights from recent studies
on payment and banking (Parlour et al., 2020; Bianchi and Bigio, 2022), our paper takes a step
forward by modeling the network of payment flows. A bank’s decision to fund loans with deposit
depends on the net interest margin, its liquid assets, other characteristics, and, importantly, position
in the payment network that determines its liquidity risk and liquidity spillover to other banks.
Intermediation capacity of the banking sector depends on the topology of entire network. In our
structural estimation, we map out the network using data from Fedwire. We find that the strategic
complementarity from liquidity externality amplifies the volatility of bank credit. By analyzing the
network topology, we identify systemically important banks that drive aggregate fluctuation.

Our paper revisits several historic concepts in monetary economics. Bank lending and liquid-
ity propagation through payment have been known to be the key ingredients of money multiplier
but little has been done in the modern literature to formalize and quantify the mechanism. Rather
than relying on a binding reserve requirement, our model of money multiplier is built upon bank
liquidity management and payment-induced strategic complementarity in banks’ money creation.

Money velocity is key to theories on money demand (e.g., Alvarez and Lippi, 2014). Our
analysis focuses on supply: A higher velocity means more payments and liquidity shocks to banks,
slowing down credit and money creation. A negative correlation between money quantity and ve-
locity emerges on money supply side, which complements the demand-side mechanism in Alvarez
et al. (2009). Our paper differs from recent studies on payment and bank liquidity shocks (Bianchi
and Bigio, 2022; Lagos and Navarro, 2023) in our network perspective on money velocity. A higher
velocity causes reserves to churn faster among banks, strengthening the strategic complementarity.

Following Friedman and Schwartz (1963), the recent empirical literature on monetary assets
focus on the quantities and prices, “liquidity premium”, paid by money holders. In the tradition of
liquidity preference (Keynes, 1936; Baumol, 1952; Tobin, 1956; Sidrauski, 1967), much progress
has been made in reviving the money demand function (Alvarez et al., 2009; Alvarez and Lippi,
2009, 2013; Krishnamurthy and Vissing-Jørgensen, 2012; Lucas and Nicolini, 2015; Nagel, 2016).
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On the supply side, it has been shown that banks play an important role in supplying money and
near-money assets, earning the liquidity premium (Krishnamurthy and Vissing-Jørgensen, 2015;
Brunnermeier and Sannikov, 2016; Drechsler et al., 2018; Wang, 2018; Begenau, 2020; Piazzesi
et al., 2019). Our paper goes beyond quantities and prices. We analyze money velocity and the net-
work structure of it, anchoring on one defining feature of monetary assets—medium of exchange.1

In the recent decade, bank reserve holdings increased through several channels (e.g., quanti-
tative easing). Many have the prior that banks are satiated with liquidity. To the contrary, evidence
shows that reserve shortage still happens (Correa et al., 2020; Copeland et al., 2021; d’Avernas
and Vandeweyer, 2021; Acharya et al., 2022; Afonso et al., 2022; Yang, 2022; Lopez-Salido and
Vissing-Jørgensen, 2023). Our findings further this line of research by showing the impact of
interbank liquidity redistribution due to depositors’ payments on the supply of bank credit.

Next, we provide more details on the model setup and key findings from our structural esti-
mation. The model has N banks. Each bank is endowed certain amount of reserves and chooses
the amount of loans funded by deposits; afterwards, payments take place and, as a result, a ran-
dom fraction of deposits flow to the other banks, draining the bank’s reserves. The bank incurs an
increasing and convex (quadratic) cost of reserve loss. Intuitively, it is costly to lose liquid assets
that can serve as precautionary savings and be used for regulatory and other purposes. It is also
costly to replenish liquidity through interbank borrowing or other sources of external funds.2 The
bank may receive reserve inflows as a result of the other banks financing loans with deposits.

Therefore, banks are interconnected through their depositors’ payment activities. A network
of payment flows churns liquidity among banks. Under the increasing marginal cost of reserve
loss, such liquidity churn makes banks’ decisions to fund loans with deposits strategic comple-
ments. When one bank extends loans funded by deposits, its depositors’ payment to other banks’
depositors drives reserves to other banks. With more reserves, the other banks’ marginal cost of
reserve loss declines, so they are more willing to fund new loans with deposits. Banks’ lending de-
cisions can also be strategic substitutes. When one bank’s depositors pay other banks’ depositors,
the payees’ demand for credit from their banks declines as they now have more liquidity.

1Moneyness of an asset refers to its use in payment for goods and services or the ease of conversion into means of
payment (e.g., Grossman and Weiss, 1983; Rotemberg, 1984; Lucas, 1990; Chatterjee and Corbae, 1992; Alvarez and
Atkeson, 1997; Alvarez et al., 2002; Eisfeldt, 2007; Chiu, 2014; Lagos et al., 2017; Kiyotaki and Moore, 2019).

2If interbank markets are operate frictionlessly, a bank in surplus can lend to a bank in deficit, costlessly reversing
payment shocks (Bhattacharya and Gale, 1987). Therefore, our work builds on the literature on interbank market
frictions (e.g., Afonso and Lagos, 2015; Bigio and Sannikov, 2019). The freeze of interbank market can be interpreted
as strong convexity in the cost of reserve loss, which reduces bank lending (Iyer et al., 2013; Ippolito et al., 2016).
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The coexistence of strategic complementarity and substitution reflects the two-layer design
of payment system (Piazzesi and Schneider, 2016). When households and firms pay one another
with deposits, the payees gain liquidity, so they demand less credit from their banks. This generates
strategic substitution in banks’ lending decisions. In the meantime, as money moves in the deposit
layer of payment system, money, in the form reserves, moves across banks to settle the transactions,
generating liquidity spillover from those expanding balance sheets to those that receive payment
inflows.3 This force leads to strategic complementarity in banks’ lending decisions.

In our model, money velocity manifests itself in a random graph of interbank payment flows
that are directed by the depositors and out of the control by banks. From the perspective of an in-
dividual bank, payment liquidity risk, as a form of funding instability risk, constrains the elasticity
of its balance sheet.4 Beyond liquidity risk, payment also generates liquidity externality. When
one bank expands its balance sheet, it does not internalize the liquidity spillover to others. In equi-
librium, bank i’s lending depends on bank j’s lending through a network-effect parameter, ϕ and
the ij-th element of a network adjacency matrix that incorporates the first and second moments of
payment flows. The parameter ϕ is a key object of interest in our estimation as it captures whether
strategic complementarity (ϕ > 0) or substitution (ϕ < 0) dominates.

Our model is a quadratic game on a random graph (Galeotti et al., 2010; Jackson and Zenou,
2015) and equilibrium conditions map to a spatial econometric model (Lee et al., 2010; de Paula,
2017), a common approach in the social interaction literature (e.g., Glaeser and Scheinkman, 2000;
Ballester et al., 2006; Graham, 2008; Calvó-Armengol et al., 2009; Bramoullé et al., 2009; Blume
et al., 2015) and recently adopted in finance (Cohen-Cole et al., 2014, 2015; Ozdagli and Weber,
2017; Herskovic, 2018; Lu and Luo, 2019; Herskovic et al., 2020; Denbee et al., 2021; Jiang and
Richmond, 2021; Eisfeldt et al., 2022, 2023). We quantify the probability distribution of payment
flows using data from Fedwire. The network adjacency matrix depends on the first and second
moments of reserve flows between each pair of banks. The equilibrium structure of our model

3Payment systems differ in netting efficiency, overdraft standards, and bilateral credit lines (Kahn and Roberds,
1998, 2015; Freixas and Parigi, 1998; Bech and Garratt, 2003) but banks ultimately settle payments with reserves.

4The empirical literature has documented a large impact of funding risk on bank lending (Loutskina and Strahan,
2009; Ivashina and Scharfstein, 2010; Cornett et al., 2011; Ritz and Walther, 2015; Dagher and Kazimov, 2015;
Carletti et al., 2021). Bank run has attracted the most attention (Gorton, 1988; Saunders and Wilson, 1996; Calomiris
and Mason, 1997; Iyer and Puri, 2012; Iyer et al., 2016; Martin et al., 2018; Brown et al., 2020; Artavanis et al., 2022).
Payment liquidity risk is different from run risk as even insured deposits are used in payments. Liquidity regulations,
such as reserve requirement or liquidity coverage ratio, amplify the cost of reserve loss and the impact of payment
risk. A branch of literature on funding stability emphasizes legal and regulatory impact (Jayaratne and Strahan, 1996;
Qian and Strahan, 2007; Adelino and Ferreira, 2016; Di Maggio and Kermani, 2017; Cortés et al., 2020).
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bridges the vast information in the probability distribution of interbank payment flows to bank
decisions and, specifically, a network adjacency matrix that summarizes the strategic interactions.

We find that the force of strategic complementarity dominates (i.e., ϕ > 0) and the network
structure of money velocity becomes a shock amplification mechanism. Consider a positive shock
that triggers one bank to extend loans financed by deposits. The other banks increase lending in
response, which in turn triggers another round of shock propagation. Our estimate of ϕ is large in
magnitude, amplifying. It implies that the strategic complementarity amplifies shocks by 17%.

The model solution has a two-step structure in reminiscence of production network models
(e.g., Acemoglu et al., 2012; Herskovic, 2018). First, each bank’s shock and its reserves enter into
a network-independent level of lending, which is the optimal level when the bank is isolated from
its peers. Second, the network propagation mechanism transforms banks’ network-independent
level into the equilibrium level. Payment network generates an operator that we can apply to the
network-independent level of lending when solving the equilibrium level.

When estimating the model, we treat banks’ network-independent lending as random vari-
ables that encapsulate available reserves and potentially other characteristics. We do not unpack
their internal structure and directly estimate the distributional properties of these variables.5 This
approach allows us to stay agnostic about the amount of available reserves. It is challenging to
define money quantities (Tobin, 1965). When a bank needs reserves, it can sell other assets, so the
amount of available reserves depend on reserve holdings and the convertibility (market liquidity)
of other assets. Taking advantage of the two-step structure, our estimation focuses on the second
step in equilibrium formation, that is the payment network operator, with ϕ as the key ingredient.

To demonstrate the importance of network topology, we compare the mean and volatility
of aggregate credit supply in equilibrium with those solved under a hypothetical network where
banks are equally connected (payment flows are evenly distributed among bank pairs). Under
ϕ > 0, both networks amplify shocks. While the two networks generate similar levels of expected
credit supply, they differ in volatility, with volatility from the real network being 20% higher.

Following Diebold and Yılmaz (2014), we decompose the volatility of aggregate credit sup-
ply into individual banks’ contributions. A bank’s contribution depends on a network amplifier,
which summarizes the shock propagation routes via the payment linkages, and the volatility of

5The shock to each bank can be interpreted as anything that contributes to the randomness of network-independent
lending. It may originate from the credit-demand factors, such as collateral values and the profitability or scalability
of borrowers’ projects, or from the credit supply side, such as the bank’s informational advantage, loan market power,
liquidity positions, capital positions, or tightness of its regulatory constraints.
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its network-independent level of lending. Less than 10% of banks contribute to more than 90%
of credit-supply volatility. For these banks, their positions in the network amplify the impact of
their shocks. This measure of systemic risk based on payment data contributes to the literature on
systemic risk identification and measurement (Billio et al., 2012; Acharya et al., 2016; Adrian and
Brunnermeier, 2016; Benoit et al., 2016; Bai et al., 2018; Duarte and Eisenbach, 2021).

Lastly, we compare the equilibrium with planner’s solution. The planner equal-weights
banks’ profits without considering depositors’ or loan borrowers’ utilities. Our analysis does not
aim for welfare implications but rather focuses on quantifying the impact of network externalities.
There are three externalities. First, banks do not internalize the expected liquidity flows to other
banks. Second, a bank increases lending, the associated payment-flow uncertainty increases for
other banks. Third, depending on the pair-wise correlation of payment flows, a bank’s payment
flows may hedge against or amplify other banks’ payment risk. The planner’s expected level of
credit provision is 8.6% higher than that of the market equilibrium, and the volatility is 20% lower.
To the extent that the real economy benefits from a more favorable risk-return ratio in credit supply,
our analysis indicates that policy interventions, aiming at correcting the payment externalities, can
benefit both the borrowers and banks.6 Finally, the planner’s solution and market equilibrium also
differ in the distribution of credit provision across banks. The market equilibrium features more
dispersed distributions of both the mean and volatility. If a borrower can switch between lenders,
she would prefer moving towards those with higher expected levels and less volatility. Therefore,
liquidity externalities induced by payment flows make frictions limiting borrowers’ mobility (and
contributing to relationship lending) more costly.7

2 Model

2.1 The setup

Consider an economy with N banks. At t = 0, bank i (i ∈ {1, ..., N}) is endowed with mi

amount of reserves. Bank i lends at t = 0. Depositors make payments at t = 1. Loans are repaid at
6Payment system reforms involve the design of netting mechanisms, bilateral credit lines between banks, and

overdraft at the central bank (see, e.g., Calomiris and Kahn, 1996; Freixas and Parigi, 1998; Kahn and Roberds, 1998;
Martin and McAndrews, 2008; Bech, Chapman, and Garratt, 2010; Bech, Martin, and McAndrews, 2012; Chapman,
Gofman, and Jafri, 2019). These measures potentially reshape the payment-flow topology and affect bank lending.

7Relationship lending has been found to have a large impact on real activities (e.g., Berger and Udell, 1995; Berlin
and Mester, 1999; Ongena and Smith, 2000; Dahiya et al., 2003; Degryse and Ongena, 2005; Bolton et al., 2016).
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t = 2. Loans cannot be liquidated or sold at t = 1, so the bank relies on reserves to cover payment
outflows. The timing is in line with standard banking models (Diamond and Dybvig, 1983), and,
in practice, payment settlement is done at a higher frequency than the adjustment of loan books.

Bank i extends yi amount of loans financed by a matching amount of deposits.8 At t = 1, if
the depositors’ payees hold accounts at other banks, bank i transfers reserves to the payees’ banks
and deducts the corresponding amount of deposits, shrinking balance sheet, while the payees’
banks receive reserves and credit the payees’ deposit accounts with deposits, expanding balance
sheets. Let gij denote the fraction of payees at bank j (j ̸= i). We define

zi ≡
∑
j ̸=i

gijyi (1)

as the total reserve outflow to other banks due to the depositors’ payments. We capture the risk in
payment flows by assuming that gij is random with mean µij and variance σ2

ij . As in Bolton, Li,
Wang, and Yang (2020), deposits are essentially debts with random maturities. A random fraction∑

j ̸=i gij of the newly issued deposits will mature at t = 1 while the rest mature at t = 2. The
random gij is out of bank i’s control as it cannot interfere with its depositors’ payment decisions.

Bank i also receive payment inflows as a result of other banks’ lending. Given bank j’s
lending amount yj (j ̸= i), bank i receives payment inflow equal to gjiyj , where, consistent with
the previous definitions, gji has mean µji and variance σ2

ji. The correlation between between gij

and gji is denoted by ρij . We would expect ρij to be negative if economic activities are directional,
involving mainly bank i’s customers paying j’s customers. The correlation ρij can also be positive
if bank i’s customers’ payments to j’s customers stimulate economic activities between the two
clienteles and result in j’s customers making payments to i’s customers.9

We define the net payment outflow for bank i:

xi =
∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj , (2)

Note that payment outflow can also be viewed as depositors’ cash withdrawal (rather electronic
transfers to payees’ bank accounts) and their payees’ cash deposits. Different from Diamond and

8Bank i obtains the borrowers’ debts (loans) while the borrowers obtain bank i’s debts (new deposits). This
practice has a long history (Wicksell, 1907; Donaldson, Piacentino, and Thakor, 2018) and still holds in the modern
days (Gurley and Shaw, 1960; Tobin, 1963; Bianchi and Bigio, 2022; McLeay, Radia, and Thomas, 2014).

9For simplicity, it is assumed that the flow fractions are independent across bank pairs.
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Dybvig (1983) who assume a constant fraction of deposit holders who withdraw at t = 1, here the
withdrawal fraction,

∑
j ̸=i gij , is random.10 Our emphasis on the randomness in gij is consistent

with the findings that payment risk is a critical determinant of bank lending (Li and Li, 2021).
Bank i’s costs of covering payment outflow are specified as follows:

τ1(xi −mi) +
τ2
2
(xi −mi)

2 +
κ

2
z2i , where τ1 > 0, τ2 > 0, andκ > 0 . (3)

If xi−mi > 0 (not enough reserves to cover the outflow), this represents an increasing and convex
cost of interbank borrowing. The convexity, as microfounded in Bigio and Sannikov (2019) and
Parlour, Rajan, and Walden (2020), captures the impact of interbank market frictions (Afonso and
Lagos, 2015).11 When xi −mi < 0, this quadratic form presents an increasing and concave return
on interbank lending, and the concavity is again due to the frictions in the interbank market. Finally,
since xi, defined in (2), is the net flow, we add an additional term, κ

2
z2i (where the gross outflow,

zi, is defined in (1)), to capture the fact that netting may not happen instantaneously, especially in
the real-time gross settlement (RTGS) systems adopted by most of the advanced economies. As a
result, payment outflow may incur additional costs associated with intraday payment stress.12

Payment flows affect both banks and their customers. For bank i, payment outflows cause its
reserves to decline and, at the same time, its customers’ deposits to decline by the same amount;
likewise, payment inflows imply reserve gain for bank i and an increase in deposit holdings of
i’s customers. The simultaneous effects of payment flows on both banks and their customers is a
direct implication of the two-layer design of payment systems where settlement between banks is
done via reserves and settlement between bank customers done via deposits. The impact on bank
customers may in turn affect banks’ lending opportunities and thus ought to be considered.

Consider xi > 0, i.e., bank i and its depositors receive outflows. The depositors now have
less liquidity held in the form of deposits, so their demand for bank loans in the future increases,
which enhances bank i’s future profitability. The impact on bank i’s (continuation) value is

θ1xi +
θ2
2
x2
i , where θ1 > 0 and θ2 > 0 . (4)

10Related, Drechsler, Savov, and Schnabl (2021) emphasize that deposits are long-duration liabilities.
11Banks may borrow from the central bank, but in practice, they are discouraged from utilizing discount window

and payment-system overdrafts (Copeland, Duffie, and Yang, 2021).
12A large literature studied the intraday payment stress (Poole, 1968; Afonso, Kovner, and Schoar, 2011; Ashcraft,

McAndrews, and Skeie, 2011; Ihrig, 2019; Copeland, Duffie, and Yang, 2021; d’Avernas and Vandeweyer, 2021;
Afonso, Duffie, Rigon, and Shin, 2022; Yang, 2022). Kahn and Roberds (2009) review the studies on payment system.
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This mechanism relies a certain overlap between depositors and loan clientele, which is common
in practice. In Appendix B, we provide a microfoundation for (4) based on depositors’ liquidity
management problem. The first term, which is positive if xi > 0, arises from bank i’s customers
having less liquidity holdings (deposits) and relying more on future bank credit. The second term
captures the increasing marginal impact: As bank i’s customers lose liquidity, their marginal value
of liquidity increases, which allows the bank to profit more from credit provision.13 If xi < 0, bank
i’s profits may decline as customers receive payments and hold more liquidity. A greater inflow
(i.e., a more negative xi) and a sharper decline of customers’ marginal value of liquidity imply a
lower marginal profits (θ1 + θ2xi) from lending to meet customers’ future liquidity needs.

Let Ri+εi denote the loan return for bank i, where Ri is a constant and εi represents a shock
that is realized before bank i makes its lending decision at t = 0. The profit shock, εi, may originate
from the credit demand side, such as the profitability and scalability of borrowers’ projects and
collateral value. The shock can also arise from the credit supply side and depends on factors such
as bank i’s loan market power (e.g., Scharfstein and Sunderam, 2016), competition from non-
bank lenders (e.g., Buchak, Matvos, Piskorski, and Seru, 2018b,a; Chernenko, Erel, and Prilmeier,
2022) and regulatory costs of lending (e.g., Blattner, Farinha, and Rebelo, 2019). Under a zero
deposit rate, the net interest margin is Ri + εi − 1. Later we will show that the equilibrium level of
bank lending can be solved by applying a network propagation operator to standalone (network-
independent) lending that encapsulates the shock, reserves, net interest margin, etc. We will treat
the entire standalone lending as a random variable and ignore the internal structure. Therefore, εi
can be any shock to bank i’s standalone lending, such as a liquidity shock the depletes mi before
the lending decision or a shock to the net interest margin, and the deposit rate can be non-zero.

Collecting the net interest margin and the quadratic forms (3) and (4), we obtain the expected
profits (i.e., bank i’s objective function):

max
yi

E
[
(Ri + εi − 1)yi − τ1(xi −mi)−

τ2
2
(xi −mi)

2 − κ

2
z2i + θ1xi +

θ2
2
x2
i

]
. (5)

We impose the following parameter restriction to ensure the concavity in yi:

τ2 + κ > θ2 . (6)
13Such response in the marginal value of liquidity arises in static settings (see Appendix B) and dynamic settings

(Riddick and Whited, 2009; Bolton, Chen, and Wang, 2011; Décamps, Mariotti, Rochet, and Villeneuve, 2011).
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Note that εi is realized before the choice of yi, so the expectation operator is taken over gij . The
costs of bank i losing liquidity as a result of payment outflows, xi > 0, are offset by its depositors’
increasing marginal value of liquidity (and the associated lending profits) because as bank i loses
liquidity (reserves), its customers lose liquidity (deposits) as well. Similarly, payment inflows,
xi < 0, lead to increasing and concave profits from reserve surplus that are offset by a decrease
in profits from offering credit to depositors as depositors hold more liquidity (deposits) and their
credit needs decline.14 Our focus is on a bank’s normal-time operations rather than banking crises.
We assume that even when the realized payment flows cause the largest possible loss (which is
finite under gij, gji ∈ [0, 1]), the bank’s realized profits stay positive.

Before solving yi, we clarify that the bank finances lending with deposits instead of reserves.
Deposit issuance only causes a probabilistic reserve drawdown (as some of the borrowers’ payees
may be the bank’s own depositors) while lending out reserves causes a direct drawdown.15 There-
fore, as long as the marginal cost of spending reserves is above the deposit rate, the bank prefers
financing lending with deposits over reserves. We assume this is the case, in line with the evidence
that deposits rates are below the fed funds rate in our sample and other findings (e.g., Rose and
Kolari, 1985; Drechsler, Savov, and Schnabl, 2017a; Li and Li, 2021).

2.2 Equilibrium on the payment network

We characterize the equilibrium of the network lending game of simultaneous actions. First, we
take as given yj (j ̸= i) and solve bank i’s optimal choice of credit creation and deposit issuance, yi
(i.e., bank i’s optimal response to other banks’ decisions). To simplify the notations, we introduce

14Another cost of payment inflows for banks is related to regulations as pointed out by Bolton, Li, Wang, and Yang
(2020). Reserve and deposit inflows force banks to expand balance sheets and tighten the supplementary leverage ratio
(SLR) regulation imposed on total leverage. Moreover, banks cannot simply lend out reserves to earn higher interest
income because, with more deposits (especially the less sticky wholesale deposits), liquidity coverage ratio regulation
requires banks to hold more liquid assets. Therefore, payment inflows squeeze banks’ balance-sheet capacities. During
the Covid-19 pandemic, banks received massive deposit inflows as a result of policy stimulus and, under the regulatory
constraints, banks active seek options to turn down deposit inflows (Moise, 2021, Financial Times).

15It is assumed that deposits are cheaper sources of financing than issuing bond or equity in line with the litera-
ture on money premium that reduces banks’ cost of issuing deposits (e.g., Stein, 2012; DeAngelo and Stulz, 2015;
Krishnamurthy and Vissing-Jørgensen, 2015; Nagel, 2016; Begenau, 2020; Wang, Whited, Wu, and Xiao, 2018).
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the mean of total payment outflows as a fraction of yi:

µ−i ≡ E

[∑
j ̸=i

gij

]
, (7)

and the variance of total payment outflows as a fraction of yi:

σ2
−i = Var

(∑
j ̸=i

gij

)
. (8)

We derive the following first-order condition for yi (derivation details in the appendix):

Ri + εi − 1 =(τ1 − θ1)µ−i + yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
− τ2µ−imi

− (τ2 − θ2)
∑
j ̸=i

(
µ−iµji + ρijσijσji

)
yj . (9)

The marginal benefit of lending (i.e., the net interest margin on the left side) is equal to the marginal
cost that incorporates both the negative and positive effects of payment outflows. The first term
on the right side, (τ1 − θ1)µ−i, reflects the negative effect of draining reserves on bank profits and
the positive effect of customers losing liquidity and relying more on bank credit in the future. The
second term captures the payment-flow risk (i.e., the randomness in

∑
j ̸=i gij) associated with one

more dollar of lending with the parameter κ representing additional cost of gross payment outflows
as previously discussed. The third term shows that having more reserves reduces the marginal cost
of outflow by reducing the needs for costly reserve borrowing.

In the last term on the right side of (9), the network effects can be decomposed into the
liquidity externality and hedging externality. The first component, µ−iµjiyj , shows that if bank i

lends more and incurs the marginal outflow µ−i, bank j’s lending and its payment flow to i (i.e.,
µijyi) alleviates i’s reserve drain and thus has a greater marginal benefit in reducing i’s cost of
lending. We call this term the liquidity externality of payment network following Parlour, Rajan,
and Walden (2020). Hedging externality is captured by the second component, ρijσijσjiyj . Given
bank j’s lending, yj , one more dollar of lending by bank i causes itself (and its customers) to
receive more inflow if ρijσijσji, the covariance between gij and gji, is positive, in which case bank
i’s lending stimulates economic activities that cause j’s customers to pay i’s customers; if the
covariance is negative, the more bank i lends, the more outflow from i to j, with the overall impact
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scaled by j’s lending yj . We call this term, ρijσijσjiyj , the hedging externality. This component of
network link arises from risk sharing as in Eisfeldt, Herskovic, Rajan, and Siriwardane (2022).

Rearranging the first-order condition (9), we solve the optimal yi:

yi =ϕ
∑
j ̸=i

wijyj + ai (10)

where the network attenuation factor, ϕ, is given by

ϕ =
τ2 − θ2

κ+ τ2 − θ2
, (11)

and the ij-th element of the network adjacency matrix, denoted by W, is given by

wij =
µ−iµji + ρijσijσji

σ2
−i + µ2

−i

. (12)

The other terms are collected into ai (a = [a1, ..., aN ] in vector form):

ai ≡
Ri + εi − 1− (τ1 − θ1)µ−i + τ2µ−imi

(κ+ τ2 − θ2)(σ
2
−i + µ2

−i)
. (13)

Note that the denominator in (12) and (13) gives the second moment of total payment outflow as a
fraction of deposits (see (7) and (8)). It scales down bank i’s lending given bank j’s lending (j ̸= i)
and bank i’s characteristics in (13). This negative impact of payment flow risk on bank lending has
been documented by Li and Li (2021). This paper focuses on the network externalities.16

The peer effect depends on the attenuation factor ϕ and ij-th element of adjacency matrix:

ϕwij =

(
τ2 − θ2

κ+ τ2 − θ2

)(
µ−iµji + ρijσijσji

σ2
−i + µ2

−i

)
. (14)

If ϕwij > 0, the pair {i, j} feature strategic complementarity in their lending decisions. If τ2 > θ2

(i.e., ϕ > 0), the benefit of payment inflow from alleviating bank i’s reserve drain dominates the
cost from reducing future lending opportunities (by having i’s customers holding more liquidity).
Therefore, when bank j lends more, the expected marginal outflow, µji, goes to bank i. The liquid-
ity externality is valuable especially when bank i’s expected outflow per dollar lent, µ−i, is large.

16We interpret τ1 as proxy for the cost of reserve borrowing that reduces bank lending (Jiménez et al., 2012, 2014).
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Moreover, strategic complementarity is amplified by the hedging externality if the covariance be-
tween gij and gji, ρijσijσji, is positive, i.e., bank j’s lending triggers payment and reserve flows to
bank i precisely when bank i loses reserves via payment outflows to j. If the covariance is negative,
strategic complementarity is dampened and the pair may even flip to strategic substitution.17

The pair {i, j} exhibits strategic substitution in their lending decisions if ϕwij < 0. If
τ2 < θ2 (i.e., ϕ < 0), the cost of payment inflow from reducing future lending opportunities (by
increasing bank i’s customers’ liquidity holdings) dominates the benefit from alleviating bank i’s
reserve drain. In this case, bank i is averse to payment inflows and lends less if it expects to receive
more inflows from bank j. If ρijσijσji > 0 (thus ϕwij < 0), both the liquidity externality and
hedging externality point to more payment inflows to bank i if j lends more, so, under bank i’s
aversion to inflows (i.e., ϕ < 0), bank i lends less when j lends more; likewise, if bank i lends
more, bank j expects to receive more inflows and lends less. Therefore, the pair {i, j} exhibits
strategic substitution. If ρijσijσji < 0, the substitution effects from ϕ < 0 are dampened.

In our model, the payment network given by (12) describes the ex ante spillover effects in
both the first and second moments of payment flows. As previously discussed, the numerator of
(12) captures the hedging externality and liquidity externality from the payment network. A bank’s
lending decision depends other banks’ lending decisions because, under the two-layer design of
payment system, both the bank and its customers receive liquidity inflows due to the payments of
other banks’ borrowers. The linear and quadratic terms in the bank’s objective function imply that
both the expected flows and volatilities enter the banks’ decision making.

Proposition 1 Suppose |ϕλmax(W)| < 1, where the function λmax (·) returns the largest eigen-

value. Then, there is a unique interior solution for the Nash equilibrium outcome given by

y∗i = {M (ϕ,W)}i. a, (15)

where {}i. is the operator that returns the i-th row of its argument, and

M (ϕ,W) ≡ I+ ϕW + ϕ2W2 + ϕ3W3 + ... =
∞∑
k=0

ϕkWk = (I − ϕW)−1 , (16)

where I is the N ×N identity matrix.

17In our sample, there are only 0.39% of non-zero wij being negative. 6.47% of all pairs have non-zero wij .
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Proposition 1 summarizes the equilibrium solution.18 In vector form, we can rewrite (15):

y∗ = (I− ϕW)−1 a . (17)

The condition |ϕλmax(W)| < 1 states that network externalities must be small enough in order to
prevent the feedback triggered by such externalities to escalate without bounds. Note that equation
(10), which leads to equilibrium characterization in Proposition (1), is rather robust in that it could
be in principle derived from different micro-foundations and in different settings.19

The matrix M (ϕ,W) has an important economic interpretation: it aggregates all direct and
indirect links among banks using an attenuation factor, ϕ, that penalizes, as in Katz (1953), the
contribution of links between distant nodes at the rate ϕk, where k is the length of the path between
nodes. In the infinite sum in equation (16), the identity matrix captures the (implicit) link of each
bank with itself, the second term in the sum captures all the direct links between banks, the third
term in the sum captures all the indirect links corresponding to paths of length two, and so on. The

elements of M(ϕ,W), given by mij(ϕ,W) ≡
+∞∑
k=0

ϕk
{
Wk

}
ij

, aggregates all paths from j to i.

The matrix M (ϕ,W) contains information about the network centrality of bank. Multiply-
ing the rows (columns) of M (ϕ,W) by a unit vector of conformable dimensions, we recover the
indegree (outdegree) Katz–Bonacich centrality measure. The indegree centrality measure provides
the weighted count of the number of ties directed to each node (i.e., inward paths), while the out-
degree centrality measure provides the weighted count of ties that each node directs to the other
nodes (i.e., outward paths). The i-th row of M (ϕ,W) captures how bank i loads on the network
as whole, while the i-th column of M (ϕ,W) captures how the network as a whole loads on i.

The matrix M (ϕ,W) includes the network topology and network attenuation factor ϕ. Be-
fore the lending game starts, shocks to individual banks (attributed to εi) are encoded in a =

[a1, ..., N ], observed by banks and their peers. We can decompose ai given by (13) into a time-
invariant term for bank i, denoted by ᾱi, and a shock specific to bank i (originating from εi in the
model setup), denoted by νi, that is independent across banks:

ai = ᾱi + νi, (18)
18The sequence in (16) converges under |ϕλmax(W)| < 1 (Debreu and Herstein, 1953). The equilbrium definition

is akin to that of Calvó-Armengol, Patacchini, and Zenou (2009) who study peer effects in education.
19For instance, customers’ payments can be driven by input-output linkages (Carvalho and Tahbaz-Salehi, 2019).
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where νi has mean equal to zero and variance δ2i . In the next section, we estimate the mean and
volatility of ai directly without using the solution of ai in (13). This allows us to stay agnostic
about the empirical counterpart of mi, the available reserves for bank i to cover payment shocks.
As discussed in the introduction, the bank can potentially sell other (unmodelled) assets to obtain
reserves or even pledge loans to borrow reserves, so the available reserves do not simply map to
the bank’s reserve holdings. Moreover, treating ai as a “black box” and directly estimating the
mean and volatility allow us to broaden the interpretation of shock εi. Specifically, εi does not
necessarily enter into the net interest margin. It can, for example, hits mi. The estimation results
remain the same as long as εi enters the model in any way that brings randomness to ai. Finally,
the deposit rate in ai is not necessarily to be zero. In fact, it can take any number as our estimation
treats the entire ai as a random variable and ignores its internal structure.

In our model, a money multiplier arises. First, reserves (the monetary base) enter into banks’
network-independent lending, i.e., a given by (13). Second, the network amplifies a through
M(ϕ,W) to the equilibrium amount of loans and deposits, y. Our paper provides a theoretical
underpinning of the classic concept of money multiplier, and our estimation focuses on character-
izing the network amplification effects (i.e., the network propagation operator, M (ϕ,W)).

We define vectors ᾱ = [ᾱ1, ..., ᾱN ] and ν = [ν1, ..., νN ]. To see clearly how the network
propagates shocks, we rewrite (17) as

y∗ = M (ϕ,W) ᾱ︸ ︷︷ ︸
level propagation

+M (ϕ,W) ν︸ ︷︷ ︸
risk propagation

. (19)

The matrix M (ϕ,W) itself is not enough to determine the systemic importance of a bank. Regard-
less of M (ϕ,W), i.e., how the shocks are propagated, banks with large shocks (i.e., large δ2i ) have
a large influence on other banks’ lending decisions and the aggregate credit supply. The network
not only propagates shocks but also amplifies the impact of ᾱ on the level of banks’ lending. In
Section 3.4, we show how to utilize the equilibrium solution to identify banks that contribute the
most to the systemic risk of aggregate credit supply after we discuss the estimation methodology.

Discussion: Other assets and financing instruments. We discuss bank liabilities and assets
outside of the model. The quadratic cost of reserve drain, parameterized via τ1 and τ2, captures the
costs associated with covering reserve deficits, such as borrowing in the federal funds market and
utilizing central bank facilities. It also captures the costs of using other means of financing, such
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as raising new deposits and issuing bond or equity. At t = 0, lending is financed by deposits rather
than bond or equity issuances, so the implicit assumption is that deposits are cheaper sources of
financing in line with the literature on money premium. Finally, what happens if the bank issues
deposits at t = 0 to increase reserves or other liquid assets that are liquid at t = 1? This introduces
additional payment flows at t = 1, so yj in (10) is replaced by the sum of yi and the additional
deposits raised for acquiring reserves or liquid assets. More reserves or liquid assets increase mi,
and the impact of a higher mi is absorbed in ai. Our results hold under the extended setup.20

2.3 The planner’s solution

The model characterizes not only the shock amplification mechanism through the payment network
but also the externalities. Individual banks make their decisions without internalizing the impact
on neighbors. We proceed to a formal analysis of the planner’s problem. We consider a planner
that equally weights the objective of each bank and chooses loan provision as follows:

max
{yi}Ni=1

E

[
N∑
i=1

(Ri + εi − 1)yi − τ1(xi −mi)−
τ2
2
(xi −mi)

2 − κ

2
z2i + θ1xi +

θ2
2
x2
i

]
. (20)

We do not aim for welfare implications as the planner’s objective only incorporates banks’ profits
instead of the total welfare of banks, borrowers, and depositors. The focus is on characterizing
network externalities through the wedge between the planner’s solution and market outcome.

The planner’s first order condition for bank i’s lending amount, yi, yields:

Ri + εi − 1 =yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
− τ2µ−imi − (τ2 − θ2)

∑
j ̸=i

(
µ−iµji + ρijσijσji

)
yj

+ yi(τ2 − θ2)σ
2
−i − (τ2 − θ2)

∑
j ̸=i

(µ−jµij + ρijσijσji)yj

+ (τ2 − θ2)
∑
j ̸=i

(∑
k ̸=j

µkjyk

)
µij −

∑
j ̸=i

τ2mjµij (21)

The planner’s marginal cost of bank i’s lending is on the right side of (21). Its first three terms

20For the existence of an interior solution of deposits issued to increase mi, we need to impose an increasing and
convex cost; otherwise it’s optimal to go infinite because for every one dollar of reserves obtained via deposit financing,
the deposits raised will be gone at t = 1 with a probability smaller than one (the marginal benefit is always positive).
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also appear on the right side of the first-order condition (9) in the market equilibrium but the rest
differ and reflect the planner’s internalization of the spillover effects of bank i’s lending. First,
bank i’s costs or benefits associated with the expected outflow, (τ1 − θ1)µ−i in (9), disappears
because, from the planner’s perspective, bank i’s expected outflow is the other banks’ expected
inflow and thus i’s losses are offset by j’s gains. Second, the additional term, yi(τ2 − θ2)σ

2
−i,

reflects the fact that when bank i lends more, it adds payment flow risk not only to itself (via
the first term on the right side of (21)) but also to its neighbouring banks. Third, the fifth term,
−(τ2 − θ2)

∑
j ̸=i(µ−jµij + ρijσijσji)yj , captures the liquidity externality and hedging externality

of bank i’s lending on bank j (j ̸= i). In particular, the liquidity externality of bank i’s marginal
lending (through the marginal outflow, µij) has a stronger impact on bank j when j expected a
large outflow µ−j . The sixth term, (τ2 − θ2)

∑
j ̸=i(
∑

k ̸=j µkjyk)µij , shows that if bank j already
receives inflows due to bank k’s lending (k ̸= j), the marginal impact of liquidity from bank i (i.e.,
µij) is smaller. Finally, the last term shows that if bank j already has large reserve holdings, the
marginal impact of liquidity from bank i is smaller.

Rearranging the planner’s first-order condition (21), we solve the optimal yi:

yi =ϕ̃i

∑
j ̸=i

w̃ijyj − ϕ̃i

∑
j ̸=i

µij

(∑
k ̸=j

µkjyk

)
+ ãi (22)

where the network attenuation factor for bank i, ϕ̃i, is given by,

ϕ̃i =
(τ2 − θ2)(σ

2
−i + µ2

−i)

(κ+ τ2 − θ2) (σ
2
−i + µ2

−i) + (τ2 − θ2)σ
2
−i

=

(
1

ϕ
+

σ2
−i

σ2
−i + µ2

−i

)−1

, (23)

and the ij-th element of the network adjacency matrix, denoted by W̃, is given by

w̃ij =
µ−iµji + 2ρijσijσji + µ−jµij

σ2
−i + µ2

−i

. (24)

The other terms are collected into ãi (ã = [ã1, ..., ãN ] in vector form):

ãi ≡
εi +Ri − 1 + τ2µ−imi −

∑
j ̸=i τ2mjµij

(κ+ τ2 − θ2) (σ
2
−i + µ2

−i) + (τ2 − θ2)σ
2
−i

. (25)

Throughout this paper, “ ·̃ ” differentiates the variable in the planner’s solution from its counterpart
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in the decentralized equilibrium. The planner’s network attenuation factor differs from ϕ in (11)
and is bank i-specific due to the additional term, (τ2 − θ2)σ

2
−i, in the denominator that reflects the

payment risk spillover effect of bank i’s lending. This additional term scales down bank i’s lending
and also appears in the denominator of ãi in (25). Different from the decentralized counterpart in
(13), the numerator of ãi no longer has the expected outflow (which, from the planner’s perspective,
is offset by other banks’ inflow) but it has an additional term

∑
j ̸=i τ2mjµij because the liquidity

externality of bank i’s lending is less valuable when bank j (j ̸= i) already hold large reserves.
Finally, the ij-th element of adjacency matrix in (24) differs from its decentralized counterpart in
(12) by incorporating the hedging and liquidity externalities of bank i’s lending.

Let Φ̃ denote the diagonal matrix with the i-th diagonal element equal to ϕ̃i and U denote the
matrix with the ij-th element equal to µij . We rewrite the planner’s solution (22) in vector form:

y∗ = Φ̃W̃y − Φ̃UU⊤y + α̃ (26)

and in closed-form,
y∗ =

(
I− Φ̃W̃ + Φ̃UU⊤

)−1

α̃ . (27)

The following proposition summarizes the planner’s solution.

Proposition 2 Suppose
∣∣∣λmax

(
Φ̃W̃ + Φ̃UU⊤

)∣∣∣ < 1, where the function λmax (·) returns the

largest eigenvalue. Then, the planner’s optimal solution is uniquely defined and given by (27).

Discussion: Payment network vs. other interbank networks. The literature on interbank net-
works focuses banks’ transactions rather than depositors’ transactions. These two types of net-
works differ but are related. Depositors’ payments induce liquidity shocks to banks that can be
mitigated by interbank reserve borrowing/lending (Bhattacharya and Gale, 1987). The network of
interbank reserve trade has been the focus of the literature (reviewed by Allen and Babus (2009),
Glasserman and Young (2016), and Jackson and Pernoud (2021)).21 Instead of analyzing this net-

21More broadly, there are three types of network linkages. First, banks are linked through financial contracts (Allen
and Gale, 2000; Furfine, 2000; Eisenberg and Noe, 2001; Boss et al., 2004; Upper and Worms, 2004; Wells, 2004;
Brusco and Castiglionesi, 2007; Degryse and Nguyen, 2007; Cocco et al., 2009; Bech and Atalay, 2010; Gai et al.,
2011; Iyer and Peydró, 2011; Mistrulli, 2011; Upper, 2011; Haldane and May, 2011; Castiglionesi and Wagner, 2013;
Kuo et al., 2013; Zawadowski, 2013; Farboodi, 2014; Gabrieli and Georg, 2014; Acemoglu et al., 2015; Elliott et al.,
2015; Babus, 2016; Bräuning and Fecht, 2016; Hüser, 2016; Erol and Ordoñez, 2017; Gofman, 2017; Blasques et al.,
2018; Castiglionesi and Eboli, 2018; Demange, 2018; Craig and Ma, 2021; Corbae and Gofman, 2019; Anderson et al.,
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work, we take a step back, analyzing the primitive network of depositors’ payment flows.22 There
are three common challenges in network analysis. First, there is a lack of bilateral linkage data.
Second, linkages are endogenous to banks’ choices that are difficult to model and structurally es-
timate. Third, linkages vary and exhibit randomness. In our paper, depositor-initiated payments
are directly observed from Fedwire. Moreover, this network is not endogenous to banks’ choices
(unlike, for example, the network of interbank reserve trade) but rather emerges from depositors’
payment activities. Finally, we directly model a random graph and quantify the joint probability
distribution of depositors’ payment flows between pairs of banks.

3 Empirical Methodology

3.1 Data

We use confidential transaction-level data from Fedwire Funds Service (“Fedwire”) that span from
2010 to 2020. Fedwire is a real-time gross settlement (RTGS) used to electronically settle U.S.
dollar payments among member institutions (including more than two thousand banks). The sys-
tem processes trillions of dollars daily. In 2020, the average weekly transaction value exceeded
the U.S. annual GDP. Fedwire accounts for roughly two thirds of the transaction volume in the
U.S. The majority of the rest of transactions are mainly settled through Clearing House Interbank
Payments System (CHIPS) of 43 members, which, unlike Fedwire, allows netting (potentially at
the expense of inducing greater counterparty risks) and therefore does not fit our setting where
payments are settled on gross terms without counterparty risks. In Appendix A, we provide more
details on the structure of U.S. payment system. Bech and Hobijn (2007) provide an overview on
the adoption of real-time gross settlement (RTGS) across countries.

2020; Jackson and Pernoud, 2021; Jasova et al., 2021) Second, banks share risk exposure typically through common
assets (Cifuentes et al., 2005; Leitner, 2005; Acharya and Yorulmazer, 2007; Ibragimov et al., 2011; Allen et al., 2012;
Greenwood et al., 2015; Caccioli et al., 2015; Cabrales et al., 2017; Albuquerque et al., 2019; Heipertz et al., 2019;
Kopytov, 2019; Morrison and Walther, 2020). Third, linkages emerge from OTC bilateral trading (Duffie et al., 2009;
Hugonnier et al., 2014; Afonso and Lagos, 2015; Bech and Monnet, 2016; Farboodi et al., 2017; Chang and Zhang,
2019; Dugast et al., 2019; Eisfeldt et al., 2022; Li and Schürhoff, 2019; Üslü, 2019; Hendershott et al., 2020).

22There are possibly two reasons behind the exclusive focus of literature on interbank networks rather than the
network of customers’ payment flows. First, it is difficult to obtain customers’ payment data. Second, before the
wide adoption of RTGS, settlement does not necessarily require reserve transfer. For example, in the old deferred net
settlement (DNS) system, interbank borrowing/lending relationships can happen simultaneously as customers make
payments (banks experiencing payment outflows borrow reserves to settle with banks experiencing inflows).
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The Federal Reserve maintains accounts for both senders and receivers and settles individual
transactions immediately without netting. For each transaction, the Fedwire data provide informa-
tion on the time and date of the transaction, identities of sender and receiver, payment amount, and
transaction type. We focus on transactions instructed by customers, which are out of the banks’
control as in our theoretical model. In particular, we exclude bank-scheduled transfers and banks’
purchases and sales of federal funds. Customer-initiated transactions make up about 85% of trans-
actions (in terms of number of transactions). We obtain data on bank balance sheets and income
statements from U.S. Call Report. We merge the Fedwire data with the Call Report data using Fed-
eral Reserve’s internal identity system. Our merged sample covers 83% of banks in Call Report
(in terms of total assets). We provide the summary statistics in Table D.1 in the appendix.

Kahn and Roberds (2009) review the payment literature that focuses on how payment affects
the directly related high-frequency decisions on bank reserve management rather than bank lending
to the real economy.23 Our focus is on how payment liquidity risk propagates into banks’ decisions
on lending and balance-sheet composition at lower (quarterly) frequencies.

3.2 The empirical specification

We set up our empirical specification following the solution of yi in (10). Our estimation is based
on a quarterly sample. To maintain the standard econometric assumptions of stationarity and er-
godicity of data generating processes (Hayashi, 2000), we use banks’ quarterly loan growth rates
instead of loan amounts. Therefore, we divide both sides of (10) by the loan amount at t − 1 to
obtain the loan growth rate of bank i at t, denoted by ni,t

ni,t ≡
yi,t
yi,t−1

= ϕ
∑
j ̸=i

wij
yj,t
yi,t−1

+
ai,t
yi,t−1

. (28)

To simplify the notation, we use a′i,t to denote ai,t/yi,t−1. For the decomposition in (18), we have

a′i,t = ᾱ′
i + ν ′

i,t , (29)

23Studies analyze intraday reserve constraints, coordination failure in payment timing (Poole, 1968; Hamilton, 1996;
McAndrews and Potter, 2002; Bech and Garratt, 2003; Ashcraft and Duffie, 2007; Bech, 2008; Afonso, Kovner, and
Schoar, 2011; Afonso and Shin, 2011; Ashcraft, McAndrews, and Skeie, 2011; Bech, Martin, and McAndrews, 2012;
Ihrig, 2019; Afonso, Duffie, Rigon, and Shin, 2022; Yang, 2022), and stress in short-term funding markets (Ashcraft
and Bleakley, 2006; Ashcraft, McAndrews, and Skeie, 2011; Acharya and Merrouche, 2013; Chapman, Gofman, and
Jafri, 2019; Correa, Du, and Liao, 2020; d’Avernas and Vandeweyer, 2021; Copeland, Duffie, and Yang, 2021).
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Figure 1: Distribution of gij . This figure reports the frequency distribution of gij . The x-axis shows the logarithm
(base 10) of gij (for example, −2 corresponds to −0.01) and the y-axis shows the fraction of observations in a bin.

where, ᾱ′
i = ᾱi/yi,t−1, and the shock, ν ′

i,t, has a zero mean and a conditional variance δ
′2
i (δ′

i =

δi/yi,t−1). In our quasi-MLE estimation, the parameters enter the probability density of ni,t condi-
tional on yi,t−1, and the joint likelihood is the product of conditional probability densities.

Next, we substitute bank j’s loan growth rate, nj,t =
yj,t

yj,t−1
in (28) to obtain:

ni,t = ϕ
∑
j ̸=i

w′
ijnj,t + ᾱ′

i + ν ′
i,t , (30)

where the loan amount-adjusted adjacency matrix, denoted by W′, has the ij-th element given by

w′
ij ≡ wij

yj,t−1

yi,t−1

. (31)

To obtain w′
ij for quarter t, we calculate wij following the definition (12) and adjust it by

the lagged loan amounts of bank i and j as in (31). The statistics in wij , µij , µji, ρij , σij , σji, are,
respectively, the mean of daily observations of gij in quarter t−1, the mean of daily observations of
gji in quarter t−1, the correlation between the daily observations of gij and gij in quarter t−1, the
standard deviation of daily observations of gij in quarter t− 1, and the standard deviation of daily
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observations of gji in quarter t − 1. Following the theoretical definitions, we scale the payment
flows by bank i’s deposit stock at the beginning of the quarter to obtain gij . These payment statistics
are from the lagged quarter to maintain predeterminancy, and they will form the banks’ belief over
payment flows in quarter t. Our results are robust to extending the calculation window from one
quarter to eight lagged quarters. In figure 1, we report the frequency distribution of gij .

A key target of our estimation is the parameter ϕ. An estimate of ϕ that is statistically sig-
nificant from zero suggests that the network as a whole has a significant impact on bank lending.
And, together with the network adjacency matrix, W′, the parameter ϕ determines whether bank
lending decisions are strategic complements or substitutes. Instead of directly estimating the equi-
librium condition (30) using observations of loan growth rates, we recognize that empirically, a
bank’s lending decision depends on bank characteristics and macroeconomic variables outside of
our theoretical model. Specifically, our empirical model of loan growth rate has two components,
qi,t that is outside of model of liquidity percolation in the payment system, and ni,t, which is the
component dependent on the payment network and modelled in Section 2.

In data, we only observe li,t = qi,t + ni,t, not qi,t and ni,t separately. However, by observing
bank characteristics (denoted by xm

i,t) and macroeconomic variables (denoted by xp
t ) that drive qi,t,

we are able to estimate the network attenuation factor, ϕ, effectively using the residuals of li,t. In
our estimation, the bank characteristics include the logarithm of total assets, the ratio of liquid
securities (reserves and available-for-trade securities) to total assets, the ratio of equity capital to
total assets, the ratio of deposits to total assets, the ratio of loans to total assets, the return on assets,
and the macroeconomic variables (from FRED) include the change in effective federal funds rate
(EFFR), real GDP growth, inflation, stock market return, and housing price growth.24 All control
variables are lagged by one quarter for predeterminancy. We also include the constant as a control
variable. We provide the summary statistics in Table D.1 in the appendix.

In sum, our empirical model of the observed loan growth rate is

li,t =
M∑

m=1

βbank
m xm

i,t +
P∑

p=1

βmacro
p xp

t + ni,t, (32)

24The stock market return is the quarterly change of the Wilshire 5000 Total Market Index (a market-capitalization-
weighted index of the market value of all American-stocks actively traded in the United States). The housing price
growth is the quarterly change of the S&P/Case-Shiller U.S. National Home Price Index.
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where, according to (30), we have that

ni,t = ϕ
∑
j ̸=i

w′
ijnj,t + ᾱ′

i + ν ′
i,t ν ′

i,t ∼ N
(
0, δ

′2
i

)
. (33)

Equation (32) and (33) together constitute a spatial error model (SEM) (e.g., Anselin, 1988; El-
horst, 2010). Such models allow the joint estimation of β coefficients in the observational equation
(32), and ᾱ′

i, δ
′2
i , and ϕ in the error (or residual) equation (33). Therefore, even though the econo-

metrician does not observe ni,t directly, the parameters of the network game can still be recovered.
We can rewrite the system of (32) and (33) in vector form:

ℓt = Xtβ + nt, (34)

nt = ϕW′nt + ᾱ′ + ν ′
t . (35)

Following Proposition 1, we require that |ϕλmax(W′)| < 1, where the function λmax (·) returns the
largest eigenvalue. Under this restriction, we have

nt = (I− ϕW′)
−1

(ᾱ′ + ν ′
t) . (36)

Bank characteristics and macroeconomic variables absorb part of the variation in loan growth
rates and only leave the residual variation for identifying the network effect, ϕ, and the other
parameters of the network game. This is a conservative approach because any peer effects (or
comovement) related to these bank characteristics or common loadings on macroeconomic factors
are controlled for, and we only use the residual variations to estimate the parameters of the network
lending game. Given the strong heterogeneity in bank sizes, w′

ij = wijyj,t−1/yi,t−1, can be large
if bank i is much smaller than bank j, which then implies that for small banks, the network-
dependent component, ni,t, mechanically accounts for a large share of loan growth relative to
qi,t (the component determined by bank characteristics and macroeconomic variables). Our model
does not address the relative importance of ni,t and qi,t in driving loan growth. We only use the bank
characteristics and macroeconomic variables as control variables to absorb loan growth variations
from the existing literature. We normalize W′ to be right-stochastic (i.e., to have all row sums
equal to one or W′1 = 1) by dividing w′

ij by the i-th row sum so that the relative contributions of
ni,t and qi,t are not mechanically driven by bank sizes. Moreover, normalizing W′ also prevents
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the estimation of ϕ from being disproportionately influenced by the small banks’ loan growth.
We estimate the parameters ϕ, ᾱ′, δ′, and β by maximizing the following joint likelihood that

is derived by equations (34) and (35):

−T

2
ln
(
(2π)N |∆′|

)
− 1

2

T∑
t=1

[(I− ϕW′) (ℓt −Xtβ)− ᾱ′]
⊤
∆′−1 [(I− ϕW′) (ℓt −Xtβ)− ᾱ′] ,

where N is the number of banks, T is the total number of quarters, ∆′ is a diagonal matrix with the
i-th diagonal element equal to δ′2i , and |∆′| is the determinant of ∆′. When the shocks ν ′

t are nor-
mally distributed, the estimator is the maximum likelihood estimator (MLE) and has the textbook
properties of consistency and asymptotic normality. When the shocks are not normally distributed,
the estimator is quasi-MLE. Because the score of normal log-likelihood has the martingale differ-
ence property when the first two conditional moments are correctly specified, the quasi-MLE is
consistent and has a limiting normal distribution (Bollerslev and Wooldridge, 1992).25

3.3 Parameter identification

To fix intuition about how the key network parameter, ϕ, is identified from the data, it is useful
to consider a simplified version of the model in equations (32) and (33). Our analysis follows
(Denbee, Julliard, Li, and Yuan, 2021). Let Lt ∈ RN denote the vector containing loan growth
rates of individual banks at quarter t, and to simplify exposition let us disregard the fixed effects,
ᾱ′
i, in equation (33) and assume that the network matrix has constant weights W′. The model given

by (34) and (35) can be rewritten in vector form:

ℓt = Xtβ + nt, nt ∼ N (0N ,Ω) , (37)

where 0N denotes a N -dimensional vector of zeros, Ω = M∆′M⊤ with M = (I− ϕW′)−1,
∆′ is a diagonal matrix with elements given by

{
δ
′2
i

}N
i=1

. In deriving the covariance Ω, we used
equation (33), i.e., that in equilibrium we can rewrite nt (having, for now, removed ᾱi) as nt =

(I− ϕW′)−1 ν ′
t, where ν ′

t has a distribution with zero mean and a diagonal covariance matrix ∆′.
The reduced form specification in (37) has the same structure and properties as the Seemingly

Unrelated Regressions (SUR, see e.g. Zellner (1962)). Hence, one can consistently estimate the

25We follow Bollerslev and Wooldridge (1992) to calculate the asymptotic standard errors robust to non-normality.
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mean equation parameters, β, (e.g., via linear projections), and use the fitted residuals to construct
a consistent estimator of covariance matrix Ω. Note that if we knew the parameters ϕ and

{
δ
′2
i

}N
i=1

we could actually premultiply the specification in equation (37) by the Cholesky decomposition
of Ω−1, obtaining a transformed system with spherical errors, and therefore gaining efficiency of
the estimates – e.g., we could do the canonical GLS transformation. For this reason, rather than
employing a two-step procedure, we jointly estimate the mean equation and covariance parameters
by maximizing the quasi-maximum likelihood function.

The key question is whether we can recover the structural parameters ϕ and
{
δ
′2
i

}N
i=1

. Be-
ing symmetric, the estimated Ω̂ gives N(N + 1)/2 equations, while we have to recover N + 1

parameters in M∆′M⊤. Therefore, as long as Ω is full-rank, the system is over-identified if we
have three or more banks (with linearly independent links). In a nutshell, the identification of this
spatial error formulation works as that of structural vector autoregressions (Sims and Zha, 1999)
where the contemporaneous propagation of shocks among dependent variables (captured by ϕ in
our setting) can be recovered from the reduced-form covariance structure. Note that what allows
the identification of ϕ and

{
δ
′2
i

}N
i=1

are exactly the following two properties: (1) the observed
loan growth rate, li,t, can be decomposed into qi,t, driven by the control variables Xt, and ni,t, the
component dependent on the payments; (2) Proposition 1 states how the network component ni,t

depends on the structural shocks in equilibrium. The first restriction defines the mean equation in
(37), allowing us to recover ni,t as residuals.26 The second restriction imposes a structure on the
covariance matrix of ni,t, allowing us to recover ϕ and

{
δ
′2
i

}N
i=1

.
To sharpen the intuition, let us consider a system of three banks and the simplest network, a

chain: Bank 1 borrows from Bank 2, and 2 from 3, so

W′ =

 0 1 0

0 0 1

0 0 0

 , and M∆′M⊤ =

 δ
′2
1 + ϕ2δ

′2
2 + ϕ4δ

′2
3 ϕδ

′2
2 + ϕ3δ

′2
3 ϕ2δ

′2
3

ϕδ
′2
2 + ϕ3δ

′2
3 δ

′2
2 + ϕ2δ

′2
3 ϕδ

′2
3

ϕ2δ
′2
3 ϕδ

′2
3 δ

′2
3

 .

The volatility of n1 is δ′2
1 +ϕ2δ

′2
2 +ϕ4δ

′2
3 . The first term is the volatility of Bank 1’s structural shock,

ν ′
1. The second term is the volatility of Bank 2’s structural shock transmitted by one step to Bank 1,

i.e., ϕn2, and the third term reflects Bank 3’s shock transmitted by two steps (via Bank 2) to Bank

26Ideally, if we were to observe qi,t and ni,t separately, we could estimate ϕ and
{
σ2
i

}N
i=1

only using the data on
ni,t. But as econometricians we only observe li,t = qi,t + ni,t and the control variables that drive qi,t, so we estimate
ϕ and {δ′2

i }Ni=1 and the control variables’ coefficients jointly.
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1, i.e., ϕ2n3. By the same logic, the volatility of n2 is δ
′2
2 + ϕ2δ

′2
3 , capturing Bank 2’s exposure

to its own shock and Bank 3’s shock, while Bank 3 only loads on its own shock. The covariance
between z1 and z2 is ϕδ′2

2 +ϕ3δ
′2
3 , reflecting Bank 1’s and 2’s exposure to Bank 2’s and 3’s shocks.

The covariance between z2 and z3 is ϕδ′2
3 as it only arises from the one-step transmission of Bank

3’s shock to Bank 2, i.e., ϕz3. Such covariances are due to network connections, and their estimates
identify the network effect parameter, ϕ. Given δ

′2
3 = {Ω̂}3,3, we can solve for ϕ using either the

covariance between n1 and n3, i.e., {Ω̂}1,3 = ϕ2δ
′2
3 , or the covariance between n2 and n3, i.e.,

{Ω̂}2,3 = ϕδ
′2
3 , so the system is clearly over-identified. Moreover, given the estimates of δ′2

3 and
ϕ, either the volatility of n2, i.e., {Ω̂}2,2 = δ

′2
2 + ϕ2δ

′2
3 , or the covariance between n1 and n2, i.e.,

{Ω̂}1,2 = ϕδ
′2
2 + ϕ3δ

′2
3 , give a solution for δ′2

2 . Finally, given ϕ, δ′2
2 , and δ

′2
3 , {Ω̂}1,1 pins down δ

′2
1 .

A key identifying assumption is that the structural shocks, ν ′
i, are independent across banks,

and thus, after controlling for the observed bank characteristics and macro variables, the residuals’
(i.e., ni’s) correlations only arise from the network linkages. Therefore, the impact of network, ϕ,
is identified by such correlations. Accordingly, in the estimation, we saturate the mean equation
by controlling for a rich set of bank characteristics, so the residual correlations are driven by the
network linkages instead of missing variables that induce comovement among banks’ decisions.27

3.4 Systemic risk

In our model, shocks are realized before banks’ lending decisions and, after banks choose the
loan amounts, the shocks are propagated through the payment network. The system given by
equations (34) and (35) highlights the propagation mechanism: A shock to bank j is transmitted to
bank i through ϕw′

ij,t, so if ϕw′
ij,t > 0 (strategic complementarity), the network amplifies shocks,

and if ϕw′
ij,t < 0 (strategic substitution), the network buffers shocks. Given the realized shocks,

ν ′
t =

[
ν ′
1,t, ..., ν

′
n,t

]⊤, the ultimate impact of shocks to all banks is given by the following vector

ϵt = (I− ϕW′)
−1

ν ′
t = M (ϕ,W′) ν ′

t , (38)

where the matrix M (ϕ,W′) records the routes that propagate the shocks:

M (ϕ,W′) ≡ I+ ϕW′ + ϕ2W
′2 + ϕ3W

′3 + ... =
∞∑
k=0

ϕkW′k = (I− ϕW′)
−1

, (39)

27This identification argument is not affected by time variation in G if an unconditional variance exists.
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where the first term captures direct effects of shocks, the second is the sum of direct outbound
links, the third element is the sum of second-order links, and so on.

Consider unitary shocks to all banks. W′ being right-stochastic (i.e., W′1 = 1) implies

ϵt = (I− ϕW′)
−1

1 = M (ϕ,W′)1 = I+ ϕW′1+ ϕ2W
′21+ ϕ3W

′31+ ... =
1

1− ϕ
1 . (40)

Therefore, the network attenuation factor, ϕ, can serve as a proxy for the strength of network
amplification mechanism. In the following, we define the network multiplier.

Definition 1 (Network Multiplier) The network multiplier is defined as 1
1−ϕ

.

Given the estimates of ϕ, ᾱ′
i, and δ′2i , we use our structural model to identify systemically

important banks. A bank is systemically important if its shock has a disproportionately large
impact on the aggregate credit supply. We call such bank the volatility key bank as our approach
provides a decomposition of credit-supply volatility into different banks’ contributions.

Let Nt denote the network-dependent component of aggregate credit supply. Note that our
estimation uses the loan growth rates rather than the loan amounts, so, the link between Nt and the
network-dependent component of loan growth rate is given by

Nt =
N∑
i=1

yi,t−1ni,t = y⊤
t−1nt . (41)

Substituting in the solution of nt in (36), we obtain

Nt = y⊤
t−1 (I− ϕW′)

−1
(ᾱ′ + ν ′

t) = y⊤
t−1M (ϕ,W′) (ᾱ′ + ν ′

t) . (42)

Before the shocks are realized, we calculate the conditional mean of Nt,

Et−1[Nt] = y⊤
t−1M (ϕ,W′) ᾱ′ , (43)

and the conditional variance of Nt,

Vart−t (Nt) = y⊤
t−1M (ϕ,W′)∆′M (ϕ,W′)

⊤
yt−1 , (44)

where ∆′ is the covariance matrix of ν ′
t, a diagonal matrix whose i-th diagonal element is δ′2

i . The
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conditional mean and variance of aggregate credit supply characterize in expectation the strength
of the payment network in generating bank credit provision and propagating shocks. Next, we
define the volatility key bank through the network impulse response function.

Definition 2 (Network Impulse Response Function and Volatility Key Bank) The impulse re-

sponse of aggregate credit supply to a one standard-deviation shock to a bank i is given by

NIRFi,t−1 (ϕ, δ
′
i,W

′) ≡ ∂Nt

∂ν ′
i,t

δ′i = y⊤
t−1 {M (ϕ,W′)}.i δ

′
i (45)

where the operator {}.i returns the i-th column of its argument. The volatility key bank, given by

i∗t−1 = argmax
i∈{1, ..., N}

NIRFi,t−1 (ϕ, δ
′
i,W

′) , (46)

is the one that contributes the most to the conditional volatility of aggregate credit growth.

A bank’s NIRF records the impact of its shock on the aggregate credit supply. It depends on
the network attenuation factor, ϕ, the network topology given by W′, and the size of the bank’s
shock, δ′i. Our estimation method allows us to identify both ϕ and δ′i. Next, we show that NIRFs
measure banks’ contributions to the conditional volatility of aggregate credit supply and thus iden-
tifies the volatility key bank by providing a clear ranking of each bank’s volatility contribution.

Proposition 3 (Credit-Supply Volatility Decomposition) The network impulse response functions

(NIRFs) decompose the conditional volatility of aggregate credit supply:

Vart−t (Nt) = vec
(
{NIRFi,t−1 (ϕ, δ

′
i,W

′)}Ni=1

)⊤
vec
(
{NIRFi,t−1 (ϕ, δ

′
i,W

′)}Ni=1

)
, (47)

where “vec” is the vectorization operator.

3.5 Comparing the planner’s solution and market equilibrium

We compare the conditional expectation and conditional volatility of aggregate credit supply from
the market equilibrium and those from the planner’s solution. First, we show how to utilize the
parameter estimates in calculating the planner’s solution. Following Section 3.2, we define

w̃′
ij = w̃ij

yj,t−1

yi,t−1

, (48)
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where w̃ij is defined in (24), and
µ′
ij = µij

yj,t−1

yi,t−1

. (49)

The network-dependent component in the planner’s solution (50) can be written as

ñi,t =ϕ̃i

∑
j ̸=i

w̃′
ijñj,t − ϕ̃i

∑
j ̸=i

µij

(∑
k ̸=j

µ′
kjñk,t

)
+ ã′i,t (50)

where ϕ̃i =
(

1
ϕ
+

σ2
−i

σ2
−i+µ2

−i

)−1

is defined (23) and ã′i,t ≡ ãi,t/yi,t−1 (ãi,t given by (25)). Following

Section 2.3, let W̃′ and U′ denote the matrices whose the ij-th elements are equal to w̃′
ij and µ′

ij ,
respectively. Let ã′

t denote the vector for ã′i,t, i = 1, ... N . And, let Φ̃ denote the diagonal matrix
with the i-th diagonal element equal to ϕ̃i. In vector form, we have:

ñt = Φ̃
(
W̃′ −UU′⊤

)
ñt + ã′

t . (51)

The planner’s choice of individual banks’ lending can be solved as follows:

ñt = M̃
(
Φ̃,W̃′,U,U′

)
ã′
t . (52)

where we define
M̃
(
Φ̃,W̃′,U,U′

)
≡
(
I− Φ̃W̃′ + Φ̃UU

′⊤
)−1

. (53)

Next, we explain how to calculate the planner’s solution with payment data and parameters
from our estimation of market equilibrium. Following the calculation of wij of the market equilib-
rium in Section 3.2, we calculate w̃ij following the definition (24) using the statistics of payment
flows in quarter t − 1 and obtain µij by calculating the average of gij in quarter t − 1. µ′

ij is cal-
culated following (49). Following Section 2.3, we normalize W̃′ − UU′⊤ to be right-stochastic.
We calculate ϕ̃i using the estimate of ϕ and the payment statistics, σ2

−i and µ−i (see Section 3.2).
To compute the mean and standard deviation of ã′i,t, we solve the connection between ã′i,t in the
planner’s solution and a′i,t in (29) of the market equilibrium:

ã′i,t =
ãi,t
yi,t−1

= b′i,t +
ϕ̃i

ϕ
a′i,t , (54)
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where,

b′i,t ≡
ϕ̃i

(σ2
−i + µ2

−i)

[(
τ1 − θ1
τ2 − θ2

)
µ−i

yi,t−1

−
(

τ2
τ2 − θ2

)∑
j ̸=i

µij
mj

yi,t−1

]
. (55)

We rewrite the planner’s solution (52) in vector form:

ñt = M̃
(
Φ̃,W̃′,U,U′

)
b′
t−1 + M̃

(
Φ̃,W̃′,U,U′

) 1

ϕ
Φ̃ a′

t . (56)

The network-dependent component of aggregate credit supply in the planner’s solution is

Ñt =
N∑
i=1

yi,t−1ñi,t = y⊤
t−1ñt . (57)

After obtaining the estimates of ϕ, ᾱ′
i (the mean of a′i,t) and δ′i (the volatility of a′i,t), we compute

the mean and volatility of second term in ã′i,t and thus obtain the conditional mean and volatility of
the second term in ñt. Because the first term in ñt (i.e., M̃(Φ̃,W̃′,U,U′)b′

t−1) does not contribute
to the conditional volatility, we can solve the conditional volatility of the planner’s solution of Ñt:

Vart−1

[
Ñt

]
=

1

ϕ2
y⊤
t−1M̃

(
Φ̃,W̃′,U,U′

)
Φ̃2∆′M̃

(
Φ̃,W̃′,U,U′

)⊤
yt−1, (58)

where, as previously defined, ∆′ is a diagonal matrix with the i-th diagonal element equal to δ
′2
i .

The calculation of the conditional mean of Ñt,

Et−1

[
Ñt

]
= y⊤

t−1M̃
(
Φ̃,W̃′,U,U′

)
b′
t−1 + y⊤

t−1M̃
(
Φ̃,W̃′,U,U′

) 1

ϕ
Φ̃ ᾱ′ , (59)

requires the first term in ã′i,t, and the first term in ã′i,t depends on the parameters, τ1, τ2, θ1, and
θ2 that cannot be separately identified in our estimation (as we only estimate ϕ = τ2−θ2

κ+τ2−θ2
de-

fined in (11)). Therefore, when comparing the conditional mean of Nt of the market equilibrium
and the conditional mean of Ñt of the planner’s solution, we focus on the second component
of Et−1[Ñt] that can be computed from our parameter estimates. Moreover, the second com-
ponent, y⊤

t−1M̃(Φ̃,W̃′,U,U′) 1
ϕ
Φ̃ ᾱ′, is more comparable to the market-equilibrium counterpart,

Et−1[Nt] = y⊤
t−1M (ϕ,W′) ᾱ′ in (43) because the only differences are in the network propagation

(i.e., M̃(Φ̃,W̃′,U,U′) vs. M (ϕ,W′)) and the deviations of ϕ̃i from ϕ (captured by 1
ϕ
Φ̃).
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Number of Banks: 500 500
( Not winsorized )

300 400 600 700

ϕ̂ 0.1452
(3.44)

0.1377
(3.43)

0.1499
(3.16)

0.1562
(3.42)

0.1396
(3.17)

0.1373
(3.06)

1/
(
1− ϕ̂

)
1.1698 1.1597 1.1764 1.1852 1.1623 1.1591

R2 0.1139 0.1138 0.1205 0.1150 0.1183 0.1167

Table 1: Network multiplier. The table reports the estimate of ϕ in the system of equations (32) and (33). The
t-statistics are calculated with quasi-MLE robust standard errors and are reported in parentheses under the estimated
coefficients. The network multiplier, 1/(1−ϕ̂), is reported in the second line, and the R2 in the third line is the fraction
of variation explained by the control variables (i.e., the bank characteristics and macroeconomic variables).

4 Estimation Results

4.1 The network multiplier

In this section, we present our empirical results. Table 1 reports the estimate of the key parameter
ϕ, the network attenuation factor and the implied network multiplier. Our estimation is done on
different subsamples of banks ranked by the size of their deposit liabilities. The main specification
includes the top 500 banks, and the results are reported in the first column. In the second column,
we show that the results are similar without winsorizing gij at 0.5% for the calculation of the
payment-flow statistics (such as µij , σij , and ρij). In the last four columns, we report the results
based on top 300, 400, 600, and 700 banks and show that the results are similar.

A key finding is that ϕ is positive and the network multiplier is greater than one. As discussed
in Section 3.2, under ϕ > 0 or 1/(1 − ϕ) > 1, the network amplifies unitary shocks to all banks
by the amount of 1/(1 − ϕ) − 1. For example, an estimate of ϕ equal to 0.1452 (and a network
multiplier equal to 1.1698) implies that the network amplifies the shocks by around 17%. The
finding of a stable estimate of ϕ across different numbers of banks shows robust network effects
that are not drive by a (core) subset of banks of large sizes.28

The finding of ϕ > 0 also suggests that the bank liquidity management channel dominates
the customer liquidity management channel. As previously discussed in Section 2, the key fea-
ture of the two-layer payment system is that when payment outflows happen, a bank experiences

28The network adjacency matrix, W′, is independently constructed for each subsample with only banks in the
subsample as nodes on the network.
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Figure 2: The estimates of ᾱ′
i and δ′i. This figure reports the frequency distribution of the estimates of ᾱ′

i (Panel
A) and δ′i (Panel B) across different samples of banks ranked by the size of deposit liabilities.

reserve outflows and its depositors experience deposit outflows. The former implies a cost on the
bank, while the latter implies an increase in the customers’ marginal value of liquidity and future
lending opportunities for the bank. When ϕ > 0, which implies τ2 > θ2, the bank’s marginal
cost of losing liquidity dominates the marginal benefit of having more lending opportunities in the
future. Moreover, as discussed in Section 2.2, the sign of ϕw′

ij determines whether banks’ lending
decisions are strategic complements or substitutes. In our sample, there are only 0.39% of non-zero
w′

ij being negative.29 Therefore, a positive estimate of ϕ indicates strategic complementarity.
We have hundreds of banks (i.e., hundreds of ᾱ′

i and δ′i) in each sample, and the samples
differ in the number of ᾱ′

i and δ′i, so it is more convenient to compare the estimation of ᾱ′
i and

δ′i through the frequency distribution in Figure 2. The figure shows that across subsamples, the
distributions of these parameters are fairly consistent, which again suggests the robustness of equi-
librium characteristics of the network lending game to the selection of subsamples of banks ranked
by deposit sizes. We report the estimates of control variable coefficients in Table D.2 and show
that these estimates are statistically close in Figure D.1 in the appendix.

29Among all the potential pairs, there are 6.47% have non-zero w′
ij .
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Figure 3: Network propagation and aggregate credit supply. This figure reports the mean (Panel A) and
volatility (Panel B) of aggregate credit supply conditional on the outstanding loan amounts of the previous period (i.e.,
{yi,t−1}Ni=1). In both panels, the statistics are decomposed into each round of network propagation. We show results
based on our data network and a counterfactual network where all banks are equally connected (i.e., w′

ij = 1/(N−1)).

In the following, our analysis is based on the sample of top 500 banks. We analyze the impact
of network externalities on aggregate credit supply. Equation (39) shows that under ϕ > 0, each
round of network propagation amplifies banks’ responses in loan growth to their own and other
banks’ expected levels (ᾱ′

i) and shocks (ν ′
i,t). Therefore, aggregate credit supply depends on both

the expected levels and shocks of individual banks, i.e., the standalone (network-independent) loan
growth, but more importantly, the network, W′, and the network attenuation factor, ϕ.

In Figure 3, we decompose the mean (Panel A) and volatility (Panel B) of aggregate credit
supply conditional on the previous period’s bank lending (yi,t−1) equal to the sample average. In
both Panel A and Panel B, the first column shows the standalone (network-independent) value
and each subsequent column corresponds to the cumulative effect after each round of network
propagation. For the network adjacency matrix, W ′, we use the average across the 44 quarters in
our sample. For both conditional mean and volatility, the second and third columns correspond
respectively to the direct network linkages and the first layer of indirect network linkages. Both
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direct and indirect linkages have significant influence on the equilibrium level of aggregate credit
supply. Linkages that are more than two steps away are relatively less important. The key to this
feature is the value of ϕ. The smaller ϕ is, the weaker effects of distant network linkages, because
as shown in (39), ϕ determines the discount factor for network linkages.

In Figure 3, we also explore the importance of network topology in determining the network
propagation mechanism. In the counterfactual network, which we call the uniform network, banks
are equally connected (i.e., w′

ij = 1/(N − 1)). In Panel A, relative to the hypothetical uniform
network, the data network generates a lower expected level of aggregate credit supply, and in each
round of network propagation, the cumulative effects of the hypothetical network are dominated
those of the uniform network. In Panel B, relative to the uniform network, the data network gener-
ates a higher volatility of aggregate credit supply. Note that in both panels, the first columns under
the two networks have the same value because they represent the standalone values without net-
work propagation. The divergence happens starting the first round of network propagation. While
both networks generated a similar expected level, the volatility difference is large in magnitude. In
our sample of top 500 banks, the average of aggregate bank lending is $6.4 trillion. We calculate
the annualized standard deviation by multiplying the quarterly value of $54 billions per quarter in
Panel B of Figure 3 by 4. Therefore, the annualized volatility generated by the payment network is
54×4/6400 = 3.4%. In contrast, the counterfactual network of equally connected banks generates
an annualized volatility of 2.8% (implied by $45 billions in Panel B of Figure 3).

In Figure 5, we compare the data network given by the average adjacency matrix W ′ and
the uniform network. The size of node i is proportional to δ′i (the volatility of bank-specific shock
to loan growth). The most connected nodes are placed at the center while the least connected at
the periphery (Fruchterman and Reingold, 1991). The distribution of edges (linkages) of the data
network is much more uneven, suggesting less heterogeneity in banks’ network positions.

The topology of payment network directly affects the aggregation of bank-level (granular)
shocks. As emphasized by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), network
propagation may cause the law of large numbers to fail on the aggregation of idiosyncratic shocks
as the number of nodes goes to infinity. While we cannot examine the asymptotic behavior as
our sample contains a finite number (500) of banks, we show in Figure 5 that the data network
generates fatter tails than the uniform network. Specifically, we simulate 10,000 times a vector of
500 i.i.d. standard normal shocks. For each simulation, we calculate the simple average (which
has a standard deviation of

√
1

500
= 0.045) and the average of shocks (denoted by ν) amplified by
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Figure 4: Network topology. This figure compares the data networks given by the average adjacency matrix W ′

in our sample and the hypothetical uniform network. The size of node i is proportional to δ′i (the volatility of structural
shock to loan growth). We apply the algorithm in Fruchterman and Reingold (1991): Linked nodes should be close
and notes should be distributed widely for visibility.

the two networks, i.e., the averages of vector (I − ϕG)−1ν where the two networks are G = W′

(the data network) and the uniform network. The figure reports the frequency distribution of the
and shows fatter tails from the shock propagation of the payment network.

4.2 Volatility key bank

We define volatility key bank in (45) as the bank with the highest network impulse response func-
tion (NIRF) and, in (47), we show that the volatility of (network-dependent component of) aggre-
gate credit supply conditional on the lending distribution in the previous period (i.e., {yi,t−1}Ni=1)
can be decomposed into individual banks’ NIRFs. Therefore, ranking banks by their NIRFs is
equivalent to ranking banks by their contributions to credit-supply volatility. Next, we analyze
how banks’ positions in the network given by the adjacency matrix, W′, and the sizes of their
structural shocks, {δ′2i }Ni=1 determine their NIRFs. As shown in Figure 5, banks differ significantly
in both aspects. Therefore, we expect to see strong cross-section heterogeneity in NIRFs.

In Figure 6, we plot the loan amount implied by the size of bank-specific shock to growth
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Figure 5: Network and fat tails. We simulate 10,000 times a vector of 500 i.i.d. standard normal shocks and, for
each simulation, we calculate the average of the shocks and the averages of shocks (denoted by ν) amplified by two
networks, i.e., the averages of vector (I − ϕG)−1ν where the two networks are G = W′ (the data network) and the
uniform network. The figure reports the frequency distribution of the averages of 10,000 simulations.

rate (i.e., yi,t−1δ
′
i), and network impulse response function (NIRF) for the top five hundred banks

by deposit size. For both quantities, we set the loan amounts from the previous period, yi,t−1, to the
sample average. When yi,t−1δ

′
i and NIRF are close for a bank, the payment network does not have

a significant effect on the bank’s contribution to the volatility of aggregate credit supply. In other
words, what the bank contributes is close in magnitude to the size of its own shock. In contrast,
when NIRF and yi,t−1δ

′
i are very different for a bank, the bank’s position in payment network

significantly affects its contribution to the volatility of aggregate credit supply. In Figure 6, we
see the wedge between NIRF and yi,t−1δ

′
i is particularly large for a handful of banks. This finding

suggests that the payment network amplifies the shocks to a relatively small number of banks and
therefore generates heterogeneity in banks’ contribution to the volatility of aggregate credit supply
that is beyond the heterogeneity from banks’ difference in the size of their shocks δ′i.

Beyond the implications on aggregate credit supply, our finding in Figure 6 also sheds
light on how payment network externalities affect the cross-sectional distribution of credit-supply
volatility. The volatilities of individual banks’ lending are main sources of uncertainty in the
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Figure 6: Bank shock size and NIRF. In this figure, we plot the size of bank-specific shock, δ′i, and network
impulse response function (NIRF) for the five hundred banks in our sample.

funding environment of bank-dependent firms and households. When the payment network am-
plifies volatilities for certain banks and dampen volatilities for others, the ultimate impact on the
real economy depends on whether borrowers are able to smooth out volatilities by switching be-
tween different lenders. Frictions that limit borrowers’ mobility transmit credit-supply volatilities
to bank-financed investment of firms and households’ purchases of services, goods, and real estate.

In Panel A of Figure 7, we take the ratio of a bank’s network impulse response function
(NIRF) to its average loan amount in our sample. We rank banks by their NIRF and plot the ratio
for each bank. Note that a bank’s NIRF is comparable in magnitude to its loan value. As shown in
the definition (45), NIRF is given by the product between a bank’s lending in the previous period
and its equilibrium growth loan growth rate given the realized shock equal to the standard deviation
δ′i. If bank size is an adequate proxy for a bank’s systemic importance, we would expect a relatively
flat line. In contrast, the figure shows strong heterogeneity. Scaled by the size of lending, banks
differ significantly in their contributions to the credit-supply volatility. In other words, larger banks
are not necessarily more important in the sense of generating systemic risk in the credit supply.

To further investigate on the impact of network topology on banks’ contributions to credit-
supply volatility, we take the ratio of a bank’s NIRF to the counterfactual NIRF implied by a
uniform network, where all banks are equally connected (i.e., w′

ij = 1/(N−1)). If the ratio is close
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Figure 7: Network topology and bank NIRF. In Panel A, we take the ratio of a bank’s network impulse
response function (NIRF) and the bank’s average loan amount in our sample. The flat line is drawn from the average
NIRF divided by the cross-section average of banks’ average loan amount in our sample. In Panel B, we take the ratio
of a bank’s NIRF to the counterfactual NIRF implied by a uniform network, where all banks are equally connected
(i.e., w′

ij = 1/(N − 1)). The flat line is drawn from the average NIRF dividend by the average NIRF implied by the
uniform network. When calculating both NIRFs, we use the same estimates of parameters of the lending game. In
both panels, we rank banks by their NIRFs and plot the ratio for each bank.

to one, the topology of payment network does not affect the bank’s contribution to credit-supply
volatility relative to an equally connected network. If the ratio is greater (smaller) than one, the
payment network has an amplification (dampening) effect. In Panel B of Figure 7, we rank banks
by their NIRFs and plot the ratio for each bank. Except for less than fifty banks having a ratio
greater than one, the network actually has a buffering effect, relative to a uniform network, when
it comes to the propagation of individual banks’ shocks to the aggregate credit supply. However,
for banks with the ratio greater than one, the amplification effect is significant. As discussed in
Section 4.1, strategic complementarity under ϕ > 0 generates a shock amplification mechanism.
Our analysis in Figure 6 and 7 shows that the amplification works through a small subset of banks.

As shown in (47), the volatility of aggregate credit supply can be decomposed into individ-
ual banks’ NIRFs. In Figure 8, we rank banks by their NIRFs and, starting from the bank with the
highest NIRF, we accumulate banks’ contribution to the conditional volatility of aggregate credit
supply (conditional on the lending distribution of previous period, i.e., {yi,t−1}Ni=1, being equal to
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Figure 8: Variance Decomposition for Aggregate Credit Supply. In this figure, we rank banks by their network
impulse response functions (NIRFs) and, starting from the bank with the highest NIRF, we accumulate banks’ con-
tribution to the conditional volatility of aggregate credit supply (conditional on the lending distribution of previous
period, i.e., {yi,t−1}Ni=1, being equal to the sample-average lending distribution). The cumulative volatility is divided
by the total conditional volatility of the network-dependent component of aggregate credit supply given by (44).

the sample-average lending distribution). The cumulative volatility is divided by the total condi-
tional volatility of aggregate credit supply given by (44). The curve ends at 100% because after
fully accounting for all banks’ contributions (i.e., NIRFs), we arrive at the total volatility. A key
finding from Figure 8 is that a group of slightly more than fifty banks account for almost 100% of
credit-supply volatility. This is consistent with our previous finding that the network amplification
mechanism works through a small subset of banks. From a policy perspective, it is important to
monitor these systemically important banks as any shocks to these banks are amplified dispropor-
tionately by the payment network to strongly affect the aggregate supply of bank credit.

4.3 Comparing the planner’s solution and market equilibrium

We apply the framework in Section 3.5 to compare the market equilibrium and the planner’s so-
lution. The planner maximizes the total profits of all banks, internalizing the liquidity externality
and hedging externality through the payment network. In Panel A of Figure 9, we decompose
the expected aggregate credit supply (conditional on previous loan amounts, i.e., {yi,t−1}Ni=1) into
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Figure 9: Network propagation: market equilibrium vs. the planner’s solution. This figure reports the
mean (Panel A) and volatility (Panel B) of aggregate credit supply conditional on the outstanding loan amounts of the
previous period (i.e., {yi,t−1}Ni=1). In both Panel A and B, the statistics are decomposed into each round of network
propagation. We show both the calculation based on the market equilibrium and from the planner’s solution.

rounds of network propagation. The first column in both cases is generated by the loan growth
rate independent from any network effects (i.e., ᾱ′

i for the market equilibrium and ϕ̃iα
′
i/ϕ in the

planner’s solution). The second column adds to the first column the impact of direct network link-
ages, and the third column adds to the second column the impact of first-degree indirect linkages.
The planner’s solution differs from the market equilibrium by internalizing the spillover effects of
banks’ lending decisions. Once the network effects are activated (i.e., starting from the second col-
umn), the planner’s solution features a higher expected level of credit supply. The wedge is stable
across rounds of network propagation, suggesting that the main difference between the planner’s
solution and market equilibrium is due to the direct network linkages.

In Panel B of Figure 9, we decompose the volatility of aggregate credit supply (conditional on
{yi,t−1}Ni=1) into rounds of network propagation. By internalizing the spillover effects of individual
banks’ lending decisions, the planner responds to the shocks to individual banks differently from
the market equilibrium, so the planner’s aggregate credit supply features a volatility that is around
10% below that of the market equilibrium. Overall, the planner’s solution features a risk-return

40



Figure 10: NIRF and expected network lending distribution: Market equilibrium vs. planner’s solu-
tion. In Panel A, we plot the histogram of banks’ NIRFs obtained from the market equilibrium and planner’s solution.
In Panel B, we plot banks’ expected lending in the network game from the market equilibrium and planner’s solution.

trade-off that is superior to that implied by the market equilibrium. In other words, payment
network externalities induce a lower expected level of credit supply and higher volatility.

In Figure 10, we compare the planner’s solution and market equilibrium through the distri-
bution of lending volatility and expected level across banks. Many borrowers rely on relationship
lending. Therefore, the distribution of credit across banks affects the real economy. In Panel A of
Figure 10, we plot the histogram of banks’ volatilities of banks’ lending given by the market equi-
librium condition (36). Using the planner’s solution (52), we also calculate the volatility of banks’
lending implied by the planner’s solution. The volatility distribution of the market equilibrium is
tilted to the right relative to the planner’s distribution, suggesting more volatile credit supply at
bank level. A borrower can switch from a bank with a higher lending volatility to a more stable
lender can benefit from having a more stable credit supply condition.

In Panel B of Figure 10, we calculate the expected levels of lending for individual banks
using the market equilibrium condition (36) and the planner’s solution (52) and plot the histogram
for both cases. Note that, as discussed in Section 3.2, the constant among control variables absorbs
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Figure 11: Rolling estimation: market equilibrium vs. the planner’s solution. In this figure, we report
the rolling estimation results with each rolling window containing twenty two quarters (i.e., half of the total forty
four quarters in our sample). We report the estimate of network multiplier in Panel A together with the confidence
band of two standard errors. In Panel B and C, we compare respectively the volatility and expectation of aggregate
credit supply implied by the loan growth rates in the market equilibrium and planner’s solution (conditional on previous
lending amounts, {yi,t−1}Ni=1 where yi,t−1 is set to the full-sample average). In Panel B, we also plot the sum of banks’
network-independent volatilities conditional on previous loan amounts (i.e., {yi,t−1δ

′
i}Ni=1). In Panel C, we also plot

the sum of banks’ network-independent expected lending conditional on previous loan amounts (i.e., {yi,t−1ᾱ
′
i}Ni=1).

the average lending, so the estimates of ᾱ′
i can potentially be negative. The distribution of expected

lending in the market equilibrium exhibits wider dispersion than that of the planner’s solution. This
finding suggests that payment network externalities generate a greater cross-sectional dispersion
of bank lending and thus makes any frictions limiting borrowers mobility more costly.

In Figure 11, we present the rolling estimation results. We conduct rolling estimation with
each rolling window containing twenty two quarters (i.e., half of the total forty four quarters in our
sample). In Panel A of Figure 11, we report the estimate of the network multiplier and the confi-
dence interval of two standard errors from the method of Bollerslev and Wooldridge (1992) that is
robust to non-normality of shocks in quasi-MLE. The estimate is plotted against the last quarter of
the rolling sample. The multiplier demonstrates significant variation over time. During the Covid-
19 pandemic, banks experience larger shocks and greater heterogeneity in shock exposure, so our
estimate of ϕ contains more noise and has a wider standard-error band.
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Next, we compare the volatility and expectation of aggregate credit supply implied by the
loan growth rates in the market equilibrium and planner’s solution (conditional on previous lending
amounts, {yi,t−1}Ni=1 where yi,t−1 is set to the full-sample average). The dynamics of wedge be-
tween the two equilibria follow the dynamics of network multiplier. When ϕ is higher, the network
externalities are stronger, which then implies a greater difference between the two equilibria.

In Panel B of Figure 11, we show that during the period of low ϕ (the rolling windows
ending between 2018 and 2019), the conditional volatility of planner’s credit supply is close to
the simple sum of banks’ volatilities independent of network effects (i.e., {yi,t−1δ

′
i}Ni=1). During

this period, payment network externalities amplify individual banks’ shocks so market equilibrium
generates a higher volatility of aggregate credit supply than the sum of banks’ network-independent
volatilities. The volatility wedge can be as high as $8 billions per quarter (i.e., annualized volatility
of 8× 4/6400 = 0.5% given the average aggregate bank credit of $6.4 trillions in our sample).

In Panel C of Figure 11, we plot the conditional expectation. Both the market equilibrium
and planner’s solution feature a higher level of credit supply than what is implied by the simple
sum of banks’ network-independent credit provision. Therefore, the payment network has a overall
positive effect on amplifying the aggregate credit supply through the circulation of liquidity among
banks. Across different time periods, the wedge between the market equilibrium and planner’s
solution is larger when the estimate of ϕ is larger in Panel A. Over time, both the conditional
volatility (in Panel B) and expectation (in Panel A) of planner’s credit supply exhibits much smaller
variations than those of the market equilibrium, suggesting that payment network externalities
generate significant uncertainty in the credit conditions for the real economy.

5 Conclusion

We develop a model of money multiplier with the key ingredient being the payment-induced liq-
uidity churn among banks. The interbank network of depositors’ payment flows generates strategic
complementarity in banks’ lending decisions and amplifies shocks to individual banks. The topol-
ogy of payment flows affects the aggregate supply of bank credit. Our analysis reveals a subset of
systemically important banks that drive the fluctuation of credit supply due to their special posi-
tions in the payment network. Finally, we quantify the network externalities and show that policy
interventions targeted at such externalities may improve the risk-return profile of credit supply.

Our paper offers a new perspective on money multiplier and velocity. Banks finance lend-
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ing with deposits and hold reserves to cover payment outflows under real-time gross settlement
(RTGS), creating a natural link between the monetary base and the creation of credit and deposits.
Liquidity percolation through payment generates interconnectedness in banks’ liquidity conditions.

In the rapidly growing space of digital payment, technology-driven entrants rewire payment
flows, and central banks around the world actively research on their own versions of digital curren-
cies. So far, discussion on payment systems has largely focused on operational efficiency and tech-
nological vulnerabilities. Our paper brings attention to credit supply and provides an equilibrium-
based framework for quantifying the impact of changes in payment networks on credit conditions.
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A Appendix: Background Information on Payment Systems

The Fedwire Funds Service is the primary payment system in U.S. for large-value domestic and
international USD payments. It is a real-time gross settlement system that enables participants to
initiate funds transfer that are immediate, final, and irrevocable once processed. The service is
operated by the Federal Reserve Banks. Financial institutions that hold an account with a Federal
Reserve Bank are eligible to participate in the service and electronically transfer funds between
each other. Such institutions include Federal Reserve member banks, nonmember depository in-
stitutions, and certain other institutions, such as U.S. branches and agencies of foreign banks.

Participants originate funds transfers by instructing a Federal Reserve Bank to debit funds
from its own account and credit funds to the account of another participant. To make transfers, the
following information is submitted to the Federal Reserve: the receiving bank’s routing number,
account number, name and dollar amount being transferred. Each transaction is processed individ-
ually and settled upon receipt. Wire transfers sent via Fedwire are completed the same business
day, with many being completed instantly. Participants may originate funds transfers online, by
initiating a secure electronic message, or offline, via telephone procedures.

Participants of Fedwire Funds Service can use it to send or receive payments for their own
accounts or on behalf of corporate or individual clients. In the paper, we focus on Fedwire fund
transfers made on behalf of banks’ corporate or individual clients, which make up about 80% of
total transactions in terms of transaction number.

The Fedwire Funds Service business day begins at 9:00 p.m. eastern standard time (EST)
on the preceding calendar day and ends at 7:00 p.m. EST, Monday through Friday, excluding
designated holidays. For example, the Fedwire Funds Service opens for Monday at 9:00 p.m.
on the preceding Sunday. The deadline for initiating transfers for the benefit of a third party
(such as a bank’s customer) is 6:00 p.m. EST each business day and 7:00 p.m. EST for banks
own transactions. Under certain circumstances, Fedwire Funds Service operating hours may be
extended by the Federal Reserve Banks.

To facilitate the smooth operation of the Fedwire Funds Service, the Federal Reserve Banks
offer intraday credit, in the form of daylight overdrafts, to financially healthy Fedwire participants
with regular access to the discount window. Many Fedwire Funds Service participants use daylight
credit to facilitate payments throughout the operating day. Nevertheless, the Federal Reserve Pol-
icy on Payment System Risk prescribes daylight credit limits, which can constrain some Fedwire
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Funds Service participants’ payment operations. Each participant is aware of these constraints and
is responsible for managing its account throughout the day.

The usage of Fedwire Funds Service grows over our sample period from 2010 to 2020, with
total number of transfers and transaction dollar value increasing by 47% and 38%, respectively.
In 2020, approximately 5,000 participants initiate funds transfers over the Fedwire Funds Service,
and the Fedwire Funds Service processed an average daily volume of 727,313 payments, with an
average daily value of approximately $3.3 trillion.30 The distribution of these payments is highly
skewed, with a median value of $24,500 and an average value of approximately $4.6 million. In
particular, only about 7 % of Fedwire fund transfers are for more than $1 million.

The other important interbank payment system in U.S. is the Clearing House Interbank Pay-
ments System (CHIPS), which is a private clearing house for large-value transactions between
banks. In 2020, CHIPS processed an average daily volume of 462,798 payments, with an average
daily value of approximately $1.7 trillion, about half of the daily value processed by Fedwire.31

There are three key differences between CHIPS and Fedwire Funds Service. First, CHIPS is pri-
vately owned by The Clearing House Payments Company LLC, while Fedwire is operated by the
Federal Reserve. Second, CHIPS has less than 50 member participants as of 2020, compared with
thousands of banking institutions making and receiving funds via Fedwire. Third, CHIPS is not a
real-time gross settlement (RTGS) system like Fedwire, but a netting engine that uses bilateral and
multi-lateral netting to consolidates pending payments into single transactions. The netting mech-
anism significantly reduces the impact of payment flows on banks’ decision making (and therefore
our sample focuses on the RTGS, Fedwire) but exposes banks to potential counterparty risks.

30Data source: www.frbservices.org. Federal Reserve also operates two smaller payment systems, National Settle-
ment Service (NSS) with an average daily settlement value of $93 billions in 2020 (source: www.frbservices.org). and
FedACH with an average daily settlement value of $122.8 billion in 2020 (source: www.federalreserve.gov).

31Data source: https://www.theclearinghouse.org
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B Appendix: Bank Customer Liquidity Management

In this section, we microfound the component, θ1xi +
θ2
2
x2
i , of bank i’s objective function by

modelling the liquidity management problem of bank i’s customers.
In aggregate, bank i’s customers lose liquidity xi, which is equal to the payment outflow to

other banks’ customers. To cover the liquidity shortfall, bank i’s customers may borrow from bank
i, for example, in the form of lines of credit.32 Consider a unit mass of customers and the evenly
distributed loss of liquidity (i.e., each customer’s loss of liquidity is equal to xi). A representative
customer chooses c, the amount of liquidity obtained from bank i (for example, the size of lines of
credit). Bank i charges a proportional price Pc. The customer’s problem is given by

max
c

ξ1

[
c− xi −

1

2ξ2
(c− xi)

2

]
− cPc , (B.1)

where the parameter ξ1 (> 0) captures the overall demand for liquidity and the parameter ξ2 (> 0)
captures the decreasing return to liquidity. A key economic force is that a higher xi increases the
marginal benefit of c. In other words, when bank i’s customers lose liquidity through payment
outflows to other banks’ customers, they rely more on bank i for liquidity provision.

From the customer’s first order condition for c,

ξ1 −
ξ1
ξ2
(c− xi) = Pc , (B.2)

we solve the optimal c:

c = ξ2

(
1− Pc

ξ1

)
+ xi . (B.3)

The customer’s liquidity demand is stronger following a greater payment outflow, xi and when the
marginal value of liquidity declines slower (i.e., under a greater value of ξ2). A higher value of ξ1
or a lower price Pc also increase c. Under the homogeneity of bank i’s customers, equation (B.3)
is also the aggregate liquidity demand for the unit mass of bank i’s customers.

Bank i sets the price Pc to maximize its profits from liquidity provision:

max
Pc

[
ξ2

(
1− Pc

ξ1

)
+ xi

]
Pc . (B.4)

32Empirically, cash and lines of credit are substitutes (Lins, Servaes, and Tufano, 2010).
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Here we assume relationship banking so bank i’s customers cannot obtain liquidity elsewhere.
This translate into bank i’s market power and monopolistic profits. From the first-order condition
for Pc,

−ξ2
ξ1
Pc + ξ2

(
1− Pc

ξ1

)
+ xi = 0 , (B.5)

we solve the optimal Pc:

Pc =
ξ1
2

(
1 +

xi

ξ2

)
. (B.6)

Substituting the optimal Pc into bank i’s profits, we obtain the maximized profits:

ξ1ξ2
4

(
1 +

xi

ξ2

)2

=
ξ1ξ2
4

+
ξ1
2
xi +

ξ1
4ξ2

x2
i , (B.7)

which corresponds to the component, θ1xi +
θ2
2
x2
i , of bank i’s objective function in the main text

with
θ1 =

ξ1
2

, and, θ2 =
ξ1
2ξ2

. (B.8)

The constant ξ1ξ2
4

is omitted in bank i’s objective function in the main text.
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C Appendix: Derivation Details

C.1 Solving the equilibrium
Let ϕ denote the correlation (not negative of correlation). We have

E
[
(xi −mi)

2
]
= Var(xi) + E [xi −mi]

2 (C.1)

= Var

(∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj

)
+ E

[∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj −mi

]2

=
∑
j ̸=i

Var (gijyi − gjiyj) +

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj −mi

)2

=
∑
j ̸=i

(
y2i σ

2
ij + y2jσ

2
ji − 2yiyjσijσjiρij

)
+

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj −mi

)2

,

E
[
x2
i

]
= Var(xi) + E [xi]

2 = Var(xi) + E

[∑
j ̸=i

gijyi −
∑
j ̸=i

gjiyj

]2

=
∑
j ̸=i

Var (gijyi − gjiyj) +

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj

)2

=
∑
j ̸=i

(
y2i σ

2
ij + y2jσ

2
ji − 2yiyjσijσjiρij

)
+

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj

)2

, (C.2)

E
[
z2i
]
= Var(zi) + E [zi]

2 = Var(zi) + E

[∑
j ̸=i

gijyi

]2

=
∑
j ̸=i

Var (gijyi) +

(∑
j ̸=i

µijyi

)2

= y2i (σ
2
−i + µ2

−i) , (C.3)

where, to simplify the notations, we define

µ−i ≡
∑
j ̸=i

µij (C.4)
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and

σ2
−i =

∑
j ̸=i

σ2
ij = Var

(∑
j ̸=i

gij

)
= E

(∑
j ̸=i

gij

)2
−

(
E

[∑
j ̸=i

gij

])2

(C.5)

where the second equality is based on the fact that gij is independent across j (pairs).
To solve the first-order condition for yi, we use

∂E [xi −mi]

∂yi
=
∑
j ̸=i

µij = µ−i , (C.6)

∂E [xi]

∂yi
=
∑
j ̸=i

µij = µ−i , (C.7)

∂E [(xi −mi)
2]

∂yi
= 2

∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj −mi

)(∑
j ̸=i

µij

)

= 2
∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(
yiµ−i −

∑
j ̸=i

µjiyj −mi

)
µ−i (C.8)

∂E [x2
i ]

∂yi
= 2

∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(∑
j ̸=i

µijyi −
∑
j ̸=i

µjiyj

)(∑
j ̸=i

µij

)

= 2
∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+ 2

(
yiµ−i −

∑
j ̸=i

µjiyj

)
µ−i (C.9)

∂E [z2i ]

∂yi
= 2yi(σ

2
−i + µ2

−i) (C.10)

The first-order condition for yi:

0 =εi +R− 1− τ1µ−i + θ1µ−i − yiκ(σ
2
−i + µ2

−i)

− τ2

[∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+

(
yiµ−i −

∑
j ̸=i

µjiyj −mi

)
µ−i

]

+ θ2

[∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+

(
yiµ−i −

∑
j ̸=i

µjiyj

)
µ−i

]

65



which can be further simplified to

0 =εi +R− 1− (τ1 − θ1)µ−i + τ2µ−im− yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
+ (τ2 − θ2)

∑
j ̸=i

(
ρijσijσji + µ−iµji

)
yj (C.11)

From this condition, we solve the optimal yi.

C.2 Solving the planner’s solution
To solve the planner’s solution, we calculate the following derivatives:

∂E [(xj −mj)
2]

∂yi
=

∂

∑k ̸=j

(
y2jσ

2
jk + y2kσ

2
kj − 2yjykσjkσkjρjk

)
+

(∑
k ̸=j

µjkyj −
∑
k ̸=j

µkjyk −mj

)2


∂yi

= 2
(
yiσ

2
ij − ρijσijσjiyj

)
− 2

(∑
k ̸=j

µjkyj −
∑
k ̸=j

µkjyk −mj

)
µij

= 2
(
yiσ

2
ij − ρijσijσjiyj

)
− 2

(
yjµ−j −

∑
k ̸=j

µkjyk −mj

)
µij (C.12)

∂E
[
x2
j

]
∂yi

=

∂

∑k ̸=j

(
y2jσ

2
jk + y2kσ

2
kj − 2yjykσjkσkjρjk

)
+

(∑
k ̸=j

µjkyj −
∑
k ̸=j

µkjyk

)2


∂yi

= 2
(
yiσ

2
ij − ρijσijσjiyj

)
− 2

(∑
k ̸=j

µjkyj −
∑
k ̸=j

µkjyk

)
µij

= 2
(
yiσ

2
ij − ρijσijσjiyj

)
− 2

(
yjµ−j −

∑
k ̸=j

µkjyk

)
µij (C.13)

∂E
[
z2j
]

∂yi
= 0 (C.14)
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The first-order condition for yi:

0 =εi +R− 1− τ1µ−i + θ1µ−i − yiκ(σ
2
−i + µ2

−i) (C.15)

− τ2

[∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+

(
yiµ−i −

∑
j ̸=i

µjiyj −mi

)
µ−i

]

+ θ2

[∑
j ̸=i

(
yiσ

2
ij − ρijσijσjiyj

)
+

(
yiµ−i −

∑
j ̸=i

µjiyj

)
µ−i

]

+
∑
j ̸=i

(τ1 − θ1)µij − (τ2 − θ2)
(
yiσ

2
ij − ρijσijσjiyj

)
+ (τ2 − θ2)

(
yjµ−j −

∑
k ̸=j

µkjyk

)
µij − τ2mjµij

=εi +R− 1− (τ1 − θ1)µ−i + τ2µ−im− yi (κ+ τ2 − θ2)
(
σ2
−i + µ2

−i

)
+ (τ2 − θ2)

∑
j ̸=i

(
ρijσijσji + µ−iµji

)
yj

+ (τ1 − θ1)µ−i − (τ2 − θ2)yiσ
2
−i + (τ2 − θ2)

∑
j ̸=i

(ρijσijσji + µ−jµij)yj

− (τ2 − θ2)
∑
j ̸=i

(∑
k ̸=j

µkjyk

)
µij −

∑
j ̸=i

τ2mjµij

=εi +R− 1 + τ2µ−im− yi (κ+ 2τ2 − 2θ2)σ
2
−i − yi (κ+ τ2 − θ2)µ

2
−i

+ (τ2 − θ2)
∑
j ̸=i

(
2ρijσijσji + µ−iµji + µ−jµij

)
yj − (τ2 − θ2)

∑
j ̸=i

µij

(∑
k ̸=j

µkjyk

)
−
∑
j ̸=i

τ2mjµij

From this condition, we solve the planner’s choice of optimal yi.
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D Appendix: Additional Tables and Figures

Variable N Mean S.D. P25 P50 P75

Quarterly loan growth rate 22000 0.0230 0.0550 -0.0016 0.0143 0.0341

Bank Characteristics:
log(Asset) (unit: log(USD ’000)) 22000 15.13 1.41 14.15 14.69 15.72
Liquid Assets/Total Assets 22000 0.18 0.12 0.10 0.16 0.24
Capital/Total Assets 22000 0.11 0.03 0.09 0.10 0.12
Deposits/Total Assets 22000 0.68 0.12 0.63 0.70 0.75
Return on asset 22000 0.0026 0.0025 0.0018 0.0025 0.0033
Loans/Total Assets 22000 0.67 0.15 0.60 0.70 0.77

Macroeconomic Variables:
Effective Fed Funds Rate change (%) 22000 -0.0007 0.2361 -0.0101 0.0119 0.0521
GDP growth (%) 22000 0.51 3.09 -2.59 1.43 2.29
Inflation (%) 22000 0.43 0.66 0.11 0.46 0.82
Stock market return (%) 22000 3.68 8.06 0.51 4.52 7.97
Housing price growth (%) 22000 1.13 1.87 0.14 1.15 2.29

Cross-Section Payment Statistics:
Average net daily payment flow/Deposits (%) 500 0.01 0.91 -0.14 0.01 0.17
s.d. of net daily payment flow/Deposits (%) 500 0.97 0.83 0.48 0.74 1.14
Average gross daily outflow/Deposits (%) 500 1.82 4.31 0.35 0.74 1.47
s.d. of gross daily outflow/Deposits (%) 500 1.11 1.34 0.41 0.70 1.18

Table D.1: Summary Statistics. The table reports the number of observations, mean, standard deviation, and
percentiles of variables in our sample. Our sample contains 500 banks and 44 quarters from 2010 to 2020. We
calculate µij (σij) as the within-quarter average (standard deviation) of daily payment outflows from bank i to bank j
divided by bank i’s deposits at the beginning of the quarter. Therefore,

∑
j ̸=i µij is the average daily payment outflow

as a fraction of deposits for bank i within a quarter and
∑

j ̸=i σ
2
ij measures the payment-flow risk for bank i.
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Number of Banks: 500 500
( Not winsorized )

300 400 600 700

Constant 0.0897
(0.90)

0.0863
(0.86)

0.1449
(1.33)

0.0973
(0.96)

0.0765
(0.76)

0.0609
(0.60)

Bank Characteristics:
log(Asset) −0.0039

(−0.80)
−0.0038
(−0.76)

−0.0067
(−1.37)

−0.0046
(−0.92)

−0.0042
(−0.81)

−0.0032
(−0.62)

Liquid Assets/Assets 0.0144∗
(1.77)

0.0142∗
(1.74)

−0.0011
(−0.12)

0.0098
(1.03)

0.0200∗∗∗
(2.58)

0.0252∗∗∗
(3.52)

Capital/Assets 0.0931∗∗∗
(3.28)

0.0941∗∗∗
(3.28)

0.1086∗∗∗
(4.63)

0.0971∗∗∗
(3.58)

0.0607
(1.51)

0.0531
(1.32)

Deposits/Assets −0.0108∗∗
(−2.27)

−0.0104∗∗
(−2.22)

−0.0080
(−1.47)

−0.0079
(−1.51)

−0.0111∗∗∗
(−2.65)

−0.0097∗∗
(−2.34)

Return on asset 1.2726∗∗∗
(4.19)

1.2789∗∗∗
(4.17)

1.3469∗∗∗
(3.54)

1.3646∗∗∗
(4.00)

1.2911∗∗∗
(4.55)

1.3236∗∗∗
(4.67)

Loans/Assets −0.0296∗∗∗
(−2.96)

−0.0294∗∗∗
(−2.90)

−0.0380∗∗∗
(−4.14)

−0.0331∗∗∗
(−3.47)

−0.0241∗∗
(−2.32)

−0.0172
(−1.64)

Macro. Variables:
EFFR change (%) −0.0111

(−1.30)
−0.0111
(−1.31)

−0.0102
(−1.41)

−0.0108
(−1.27)

−0.0125
(−1.37)

−0.0123
(−1.31)

GDP growth (%) −0.0007
(−1.00)

−0.0007
(−0.98)

−0.0005
(−0.85)

−0.0007
(−0.97)

−0.0009
(−1.16)

−0.0009
(−1.15)

Inflation (%) 0.0032
(1.11)

0.0032
(1.13)

0.0032
(1.13)

0.0029
(1.03)

0.0036
(1.23)

0.0036
(1.23)

Stock return (%) −0.0009∗∗
(−2.28)

−0.0009∗∗
(−2.30)

−0.0008∗∗
(−2.50)

−0.0009∗∗
(−2.26)

−0.0009∗∗
(−2.22)

−0.0009∗∗
(−2.17)

Housing price growth (%) 0.0022∗∗
(2.52)

0.0022∗∗
(2.50)

0.0018∗∗
(2.19)

0.0020∗∗
(2.25)

0.0024∗∗
(2.56)

0.0025∗∗∗
(2.64)

(* p<0.10 ** p<0.05 *** p<0.01)

Table D.2: Control Variable Coefficients. The table reports the estimates of control variable coefficients across
samples of different sizes that contain banks ranked by the size of their deposits. The t-stats are in the parentheses.
The abbreviation, EFFR, is for effective fund funds rate.
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Figure D.1: Control variable coefficients across samples. This figure reports the ratio of an estimate from
an alternative sample to the estimate from our main sample of the top 500 banks by deposit size. A ratio around one
shows the two estimates are close. We plot the 95% confidence interval of each estimate from our main sample scaled
by the estimate so the mid-point is equal to one.
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Figure D.2: Eigenvalues of network adjacency matrix. In this figure, we plot the absolute values of five
largest eigenvalues of W′. W′ for quarter t is calculated from payment data from quarter t− 1 (see Section 2.1).
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