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Abstract

We develop a dynamic asset-pricing model of cryptocurrencies/tokens that facili-

tate peer-to-peer transactions on digital platforms. The equilibrium value of tokens

is determined by users’ transactional demand rather than cashflows as in standard

valuation models. Endogenous platform adoption exhibits an S-curve – it starts slow,

becomes volatile, and eventually tapers off. Users’ adoption generates positive network

externality, which leads to endogenous token-price risk and boom-bust price dynam-

ics. Tokens allow users to capitalize on platform growth, inducing an intertemporal

feedback between user adoption and token price that accelerates platform adoption,

reduces user-base volatility, and improves welfare.
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1 Introduction

Blockchain-based applications and cryptocurrencies have recently taken a center stage

among technological breakthroughs in finance. The global market capitalization of cryp-

tocurrencies has grown to hundreds of billions of US dollars. Nevertheless, academics, prac-

titioners, and regulators have divergent views on how cryptocurrencies derive their value.

In this paper, we provide a fundamentals-based dynamic valuation model for cryptocur-

rencies. We focus on the endogenous formation of a digital marketplace or network (“the

platform”) where its native cryptocurrency settles transactions and derives its value from

underlying economic activities on the platform. To distinguish from cryptocurrencies as

general-purpose medium of exchange (e.g., Bitcoin), we shall refer to platform-specific cur-

rencies as tokens.1 In contrast to financial assets that derive value from cash flows, the value

of tokens arises from a form of convenience yield that is specific to the platform.

Our model captures two key features shared by a majority of tokens. First, they are the

means of payment on platforms that support specific economic transactions. For example,

Filecoin is a digital marketplace that allows users to exchange data storage space for its

tokens (FIL). Another example is Basic Attention Token (BAT): advertisers use BATs to

pay for their ads, publishers receive BATs for hosting these ads, and web-browser users

are rewarded BATs for viewing these ads. Second, user adoption exhibits network effects.

In both examples, the more users the platform has, the easier it is for any user to find a

transaction counterparty, and the more useful the tokens are. Our model also applies to

tokens used on centralized platforms such as the cryptocurrency Facebook is developing.2

Consequently, the market price of tokens and the platform size (active users) naturally

arise as two key endogenous variables in our model. Our equilibrium token pricing formula

exhibit three desirable features. First, the platform’s productivity captures the value of

particular economic activities that the platform supports. Second, user base enters positively

1Tokens in our paper should also be distinguished from security tokens that represent claims on issuers’
cash-flows or rights to redeem products and services.

2See “Facebook Building Cryptocurrency-Based Payments System”, The Wall Street Journal, May 2nd
2019. Other examples include online social networks (e.g., QQ coins on Tencent’s messaging platform) and
online games (e.g., Linden dollar for Second Life and WoW Gold for World of Warcraft).
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into the pricing formula, capturing the positive network externality of user adoption. Third,

user heterogeneity matters for platform adoption and token pricing.

Moreover, we clarify the roles of tokens in platform adoption by comparing token-based

platforms and platforms without tokens. Introducing tokens encourages early adoption of

platforms with improving productivity, because agents expect token price appreciation. Such

investment motive also stabilizes adoption in the presence of temporary productivity shocks.

Finally, by jointly examining the dynamics of token price and user adoption, our analysis

sheds light on the cross-sectional variation of token values, token price volatility, and the

recent run-up and crash of leading cryptocurrencies.

Specifically, we consider a continuous-time economy with a continuum of agents who

differ in their transaction needs on the platform. We broadly interpret transactions as

including value transfers (e.g., Filecoin and BAT) and smart contracting (e.g., Ethereum).

Accordingly, we model agents’ gain from platform transactions as a flow utility from token

holdings. As a form of convenience yield specific to the platform, such flow utility naturally

depends on agents’ transaction needs, user base, and the platform’s productivity. The flow

utility increases with the size of user base, capturing the network effects, and the productivity

reflects the functionality of the platform and technological and regulatory factors.

In our model, agents make a two-step decision on (1) whether to incur a participation

cost to join the platform, and if so, (2) how many tokens to hold, which depends on both

blockchain trade surplus (“transaction motive”) and the expected future token price (“in-

vestment motive”). A key insight of our model is that users’ adoption decision not only

exhibits static complementarity through the flow utility of token holdings (the transaction

motive), but also an inter-temporal complementarity via the investment motive.

For illustration, consider a promising platform with a positive productivity drift. The

prospective growth in productivity leads agents to expect more users to join the community

in future, inducing a stronger future demand for tokens, which in turn generates a current

expectation of token price appreciation. The investment motive increases the demand for

tokens today and accelerates user adoption.

We characterize the Markov equilibrium with platform productivity being the state vari-
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able. The model has two key endogenous variables, the user base and token price. The

equilibrium outcome features an S-curve of user adoption – as the platform productivity

grows, the user base expands slowly, and then the expansion speeds up before eventually

tapering off near full adoption. We derive an equilibrium token pricing formula that incor-

porates endogenous network effects in an otherwise canonical Gordon growth formula. The

pricing formula accounts for platform productivity, user base, agents’ expectations of future

token price, and user heterogeneity. Token valuation boils down to solving an ordinary dif-

ferential equation subject to intuitive boundary conditions. After analytically characterizing

important equilibrium properties, we use data on token price and user base to guide our

choice for our choice of parameter values and then provide numerical illustrations of results.

Our model features rich interactions between financial markets and the real economy:

the financial side operates through the endogenous determination of token prices, whereas

the real side manifests itself in the user adoption and utility flows from platform’s economic

transactions. Tokens affect user adoption through the expected price appreciation, i.e.,

agents’ investment motive, while user base affects token prices by entering into the flow

utility of tokens and increasing the token demand. This two-way feedback naturally prompts

a question: given that platforms can settle transactions in other currencies (e.g., dollars),

how does a platform with local means of payment (tokens) differ from one without?

To answer this question, we compare the endogenous S-curve in our token-based economy

with adoption curves in two benchmark economies: the first-best economy (i.e., the plan-

ner’s solution) and the tokenless economy where agents use the numeraire good as the media

of exchange. Without tokens, under-adoption of promising platforms (modelled as having

positive productivity drift) arises because a user does not internalize the positive externality

from her adoption on others. In contrast, introducing tokens can improve welfare by induc-

ing more adoption through agents’ expectation of token price appreciation and investment

motive. So far we have focused on platforms with growing productivity. For those with

declining productivity, tokens precipitate the abandonment: agents forecast a smaller user

base in the future, anticipating token price depreciation, so they shun away from holding

tokens. In sum, embedding tokens on a platform front-loads the prospect of the platform
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and the resulting investment motive together the direct usage motive affects user adoption.

Introducing tokens can also reduce user-base volatility, making it less sensitive to produc-

tivity shocks. The key driver is again the agents’ investment motive. Consider a platform

with growing yet stochastic productivity. A negative productivity shock directly reduces

the user’s flow utility and thus lowers user adoption. However, this negative effect is miti-

gated by an indirect effect through the expected token price appreciation. A lower current

adoption level implies that more users can be brought onto the platform in the future and

therefore a higher expected token price appreciation. The investment motive sustains user

adoption. Similarly, a positive productivity shock directly increases adoption by increasing

the flow utility. But as the pool of potential newcomers shrinks, the expected token price ap-

preciation declines, discouraging agents from adoption. Overall, productivity shocks, when

translated to user-base fluctuations, are dampened by the endogenous dynamics of token

price.

Just as tokens affect the user-base dynamics, endogenous user adoption is critical for un-

derstanding major asset-pricing issues surrounding tokens. First, the network effects generate

a large cross-sectional variation in token price among platforms in early stages of adoption,

in line with empirical observations. Moreover, such adoption externality also amplifies the

impact of platform productivity shocks on token price, creating “excess volatility.” The

amplification effect is even stronger when we allow the productivity drift to increase with

the user base — a form of community bootstrapping that practitioners emphasize. Finally,

by allowing the productivity beta (systematic risk) to increase with platform adoption, our

model generates an initial rise of token price followed by a decline and eventual stabilization,

broadly consistent with the observed “bubbly” price dynamics.

Related Literature. Among early economics studies on blockchain games and consensus

generation mechanisms, Biais, Bisière, Bouvard, and Casamatta (2017) and Saleh (2017) an-

alyze mining/minting games in Proof-of-Work- and Proof-of-Stake-based public blockchains;

Easley, O’Hara, and Basu (2017), Huberman, Leshno, and Moallemi (2017), and Cong, He,

and Li (2018) study miners’ compensation, organization, and market structure; Abadi and
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Brunnermeier (2019) compares blockchain-based ledgers with traditional centralized ledgers;

Cong and He (2018) examine informational issues in generating decentralized consensus

with implications on industrial organization. We differ by taking as given the operational

and technical aspects of blockchains, such as the formation of decentralized consensus, and

thereby, focusing on users’ trade-off and the resulting dynamic interaction between platform

adoption and token pricing.

Among contemporary theories featuring token valuation in static settings, Sockin and

Xiong (2018) studies tokens as indivisible membership certificates for agents to match and

trade with each other; Li and Mann (2018) argues that initial token offering allows agents

to coordinate by costly signaling through token acquisition; Pagnotta and Buraschi (2018)

studies Bitcoin pricing on exogenous user networks; Catalini and Gans (2018) examines de-

velopers’ pricing of tokens to fund projects and aggregate information; Chod and Lyandres

(2018) contrast security token offerings with traditional financing. Our paper is the first

to clarify the role of tokens in aligning the usage and investment motives and shaping the

platform-adoption dynamics, in addition to delivering a token pricing formula as an equilib-

rium outcome and of practical relevance.

In dynamic settings, Athey, Parashkevov, Sarukkai, and Xia (2016) emphasize the role of

learning in agents’ decisions to use Bitcoin absent stochastic platform productivity and user

network externality; Biais, Bisière, Bouvard, Casamatta, and Menkveld (2018) emphasize

the fundamental value of Bitcoin from transactional benefits; Fanti, Kogan, and Viswanath

(2019) provide a valuation framework for Proof-of-Stake (PoS) payment systems. We differ

by studying the joint determination of user adoption and token valuation in a framework that

highlights user heterogeneity, network externalities, and most importantly, inter-temporal

feedback effects. Moreover, our model is applicable to platforms owned by trusted third

parties as well as permissioned blockchains.

We do not analyze the implications of blockchain technology on general-purpose curren-

cies and monetary policies (e.g., Balvers and McDonald, 2017; Raskin and Yermack, 2016;

Garratt and Wallace, 2018; Schilling and Uhlig, 2018). Instead, we focus on the endoge-

nous interaction between token pricing and user adoption on platforms that serve niche
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markets with time-varying productivity. Our study should therefore be distinguished from

the monetary literature. Our model also differs from standard valuation models in that the

underlying payoff of tokens is utility flow, a form of convenience yield, rather than cash

flows. The convenience yield of tokens should also be distinguished from that of other as-

sets, such commodities (Gibson and Schwartz, 1990) and safe bonds (Krishnamurthy and

Vissing-Jorgensen, 2012), because its dependence on platform-specific factors (i.e., platform

productivity, user base, and agents’ transaction needs).

We organize the remainder of the article as follows. Section 2 sets up the model; Section

3 solves the dynamic equilibrium and derives the token valuation formula; Section 4 presents

the solutions for the tokenless and first-best economies; Section 5 highlights the impact of

tokens on user adoption; Section 6 analyzes token price dynamics; Section 7 concludes. The

appendix contains a theoretical foundation for the token transaction surplus (the utility

flow), the proofs of propositions, and parameter choices in the quantitative analysis.

2 A Model of Platform Economy

Consider a continuous-time economy where a unit measure of agents conduct peer-to-

peer transactions and realize trade surpluses on a blockchain-based platform. A generic

good serves as the numeraire. We first set up and solve the model under the risk-neutral

measure. In Appendix C, we calibrate the model under the physical measure.3

2.1 Platform and Agents

The platform allows agents to conduct peer-to-peer transactions. These transactions

are settled via a medium of exchange, which can either be the numeraire good or the local

currency (token) on the platform. We use xi,t to denote the value of agent i’s holdings of

transaction medium in the unit of the numeraire good. These holdings facilitate transactions

3The typical no-arbitrage condition implies a probability measure—the risk-neutral measure—under
which agents discount future cash flows using the risk-free rate. Note that the difference between risk-
neutral measure and physical measure accounts for any risk premium (see chap 6 in Duffie, 2001).
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on the platform and generate a flow of utility over dt given by

x1−α
i,t (NtAte

ui)α dt, (1)

where Nt is the platform user base, At measures platform productivity, ui captures agent i’s

specific needs for platform transactions, and α ∈ (0, 1) is a constant. Appendix A contains

a theoretical foundation for this reduced-form flow utility.

We choose this utility flow specification for the following considerations. First, the utility

flow increases with user base Nt, i.e., the total measure of agents on the platform (with xi,t >

0). This specification captures the user network effect, as it is easier to find a transaction

counterparty in a larger community. Second, the marginal utility decreases with xi,t, captured

by α > 0. The exponents of xi,t and NtAte
ui sum up to one for analytical convenience. Note

that holding tokens over the dt period is necessary for the agent to realize this utility flow.

The platform productivity, At, evolves according to a geometric Brownian motion:

dAt
At

= µAdt+ σAdZA
t , (2)

where ZA
t is a standard Brownian motion under the risk-neutral measure. We focus on the

case of a promising yet risky platform, i.e., µA > 0 and σA > 0. We interpret At broadly. A

positive shock to At can reflect technological advances, favorable regulatory changes, growing

users’ interests, and increasing variety of activities feasible on the platform.

We assume that agents’ transaction needs, ui, are heterogeneous. Let G (u) and g (u)

denote the cross-sectional cumulative distribution function and the density function of ui

that is assumed to be continuously differentiable over a finite support [U,U ]. ui can be

broadly interpreted. For payment blockchains (e.g., Ripple), a high value of ui reflects agent

i’s urge to conduct an international remittance. For smart-contracting blockchains (e.g.,

Ethereum), ui captures agent i’s project productivity. For decentralized computation (e.g.,

Dfinity) and data storage (e.g., Filecoin) applications, ui corresponds to the need for secure

and fast access to computing power and data.

To join the platform and realize the transaction surplus, an agent incurs a flow cost φdt.
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For example, transacting on the platform takes effort and attention. At any time t, agents

may choose not to participate and then collect no utility. Therefore, agents with sufficiently

high ui choose to join the platform, while agents with sufficiently low ui do not participate.

The flow cost serves as a modeling device for users’ endogenous threshold of participation.

2.2 Tokens, Agents’ Problem, and Equilibrium

Tokens and endogenous price. In what follows, we focus on platforms with native

tokens that users hold to conduct transactions, i.e.,

xi,t = Ptki,t, (3)

where Pt is the unit price of token in terms of the numeraire good and ki,t is the units of

token.4

We conjecture and later verify that the equilibrium token price follows a diffusion process,

dPt = Ptµ
P
t dt+ Ptσ

P
t dZ

A
t , (4)

where µPt and σPt are endogenously determined. Throughout the paper, we use upper-case

letters for aggregate and price variables that individuals take as given, and lower-case letters

for individual-level variables.

Agent’s problem. Let yi,t denote agent i’s (undiscounted) cumulative payoff from plat-

form activities. Agent i then maximizes life-time payoff under the risk-neutral measure,

E
[∫ ∞

0

e−rtdyi,t

]
, (5)

4The numeraire value (Ptki,t), instead of ki,t alone, shows up in the surplus flow to facilitate the compar-
ison between platforms with and without tokens. It is also motivated by the fact that the economic value
of blockchain trades depends on the numeraire value of real goods and services that are transacted. Our
results are qualitatively similar if ki,t replaces Ptki,t in the utility flow given by Equation (1).
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where we can write the utility flow dyi,t as follows:

dyi,t = max

{
0, max

ki,t>0

[
(Ptki,t)

1−α (NtAte
ui)α dt+ ki,tEt [dPt]− φdt− Ptki,trdt

]}
. (6)

Here, the outer “max” operator reflects agent i’s option to leave the platform and obtain

zero profit, and the inner “max” operator reflects agent i’s optimal choice of ki,t.

Inside the inner max operator are four terms that add up to give the net flow payoff

from platform participation. The first term corresponds to the transaction surplus given in

(1). The second term is the expected capital gains from holding ki,t units of tokens, where

Et [dPt] = Ptµ
P
t dt. As typical in asset pricing models, the user’s incremental payoff over dt is

equal to the sum of the contemporaneous payoff and the price fluctuation, given by the first

two terms in (6). The third term is the participation cost. Finally, because holding ki,t units

of tokens for the transaction purpose comes with a forgone opportunity cost of not being

able to invest xi,t and earn interest for dt time, the financing cost is then Ptki,trdt. This is

essentially the user-cost-of-capital argument in Jorgenson (1963).5

It is worth emphasizing that in our token-based economy, agents must hold tokens for

at least an instant dt to complete transactions and derive utility flows. This holding period

exposes users to token price change over dt. For blockchain-based tokens, forging the ledger of

transactions takes time.6 This confirmation period is necessary for the finality of transactions

as shown by Chiu and Koeppl (2017). Another example is smart contracting, which often

requires holding tokens as collateral in escrow account and therefore exposes the collateral

owners to token price fluctuations. A third example involves the locking-up of “staking

tokens” or “work tokens” in order to compete for service provision in many blockchain

applications. Appendix A elaborates further through simple theoretical foundations.

The Markov equilibrium. We study a Markov equilibrium with At, the only source

of exogenous shocks in the economy, as the state variable whose dynamics generate the

information filtration under which agents make decisions under rational expectation. For

5Alternatively, we can derive the same result using the standard dynamic programming approach.
6For example, the Bitcoin blockchain requires 10-11 minutes to generate consensus on transactions.
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simplicity and to isolate user adoption and demand, we fix the token supply to a constant

M .7 The market clearing condition is

M =

∫
i∈[0,1]

ki,tdi, (7)

where for those who do not participate, ki,t = 0.

Definition 1. A Markov equilibrium with state variable At is described by agents’ decisions

and equilibrium token price such that the token market clearing condition given by Equation

(7) holds and agents optimally decide to participate (or not) and choose token holdings.

3 Dynamic Equilibrium of Adoption and Valuation

We now solve for the Markov equilibrium, where the user base, Nt, users’ token holdings,

ki,t, and token price Pt, are functions of the state variable At. First, we analyze agents’

decision to participate and hold tokens, given At and agents’ expectation of token price

change µPt . Then we complete the solution by solving the token price dynamics (and in

particular, µPt as a function of At). Each step ends with a summarizing proposition.

Token demand and user base. Conditioning on joining the platform, agent i chooses

the optimal token holdings, k∗i,t, using the first order condition,

(1− α)

(
NtAte

ui

Ptk∗i,t

)α
+ µPt = r, (8)

which states that the sum of marginal transaction surplus on the platform and the expected

token price change is equal to the required rate of return, r. Rearranging this equation, we

7This is the case with many ICOs that fix the supply of tokens. More generally, the blockchain technology
allows supply schedules to be based on explicit rules independent of any endogenous variables, and can be
accommodated in the model by adding in the resulting token inflation or deflation that are beyond the price
fluctuation due to time-varying token demands.
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obtain the following expression for the optimal token holdings:

k∗i,t =
NtAte

ui

Pt

(
1− α
r − µPt

) 1
α

. (9)

k∗i,t has several properties. First, agents hold more tokens when the common productivity,

At, or agent-specific transaction need, ui, is high, and also when the user base, Nt, is larger

because it is easier to conduct trades on the platform. Equation (9) reflects an investment

motive to hold tokens, that is k∗i,t increases in the expected token appreciation, µPt .

Using k∗i,t, we obtain the following expression for the agent’s profit conditional on partic-

ipating on the platform:

NtAte
uiα

(
1− α
r − µPt

) 1−α
α

− φ. (10)

Agent i will only particpate when the preceding expression is non-negative. That is, only

those agents with sufficiently large ui will particpate. Let ut denote the type of user who is

indifferent between participating on the platform or not.

Setting the expression (10) to zero gives the user-type cutoff threshold:

ut = u
(
Nt;At, µ

P
t

)
= − ln (Nt) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

)
. (11)

Because only agents with ui ≥ ut will particpate, the user base is then given by

Nt = 1−G (ut) . (12)

The adoption threshold ut is decreasing in At because a more productive platform attracts

more users. The threshold also decreases when agents expect a higher token price apprecia-

tion (i.e., higher µPt ).

Equations (11) and (12) jointly determine the user base Nt given At and µPt . First, we

note that zero adoption is always a solution. Next, we focus on the non-degenerate case,

i.e., Nt > 0. Fixing At and µPt , we consider a response function R
(
n;At, µ

P
t

)
that maps a
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Figure 1: Determining User Base. This graph shows the aggregate response of users’
adoption decision, R

(
n;At, µ

P
t

)
, to different levels of Nt = n ∈ [0, 1], given At and µPt .

hypothetical value of Nt, say n, to the measure of agents who choose to participate after

knowing Nt = n. As depicted in Figure 1, the response curve originates from zero (the

degenerate case). In the Appendix, we first show that given µPt , there exists a threshold

A
(
µPt
)

such that for At < A
(
µPt
)
, a non-degenerate solution does not exist, because the

response curve never crosses the 45o line. Then we prove that when At ≥ A
(
µPt
)
, the

response curve crosses the 45o line exactly once (and from above) under the assumption that

the hazard rate for g (u) is increasing.8 Later in our numerical solution, we verify that such

inequalities hold at all values of At.

Proposition 1 (Token Demand and User Base). Given µPt and a sufficiently high

productivity, i.e., At > A
(
µPt
)
, we have a unique non-degenerate solution, Nt, for Equations

(11) and (12) under the increasing hazard-rate assumption. The user base, Nt, increases

in µPt and At. Agent i participates when ui ≥ ut, where ut is given by Equation (11).

Conditional on participating, Agent i’s optimal token holding, k∗i,t, is given by Equation (9).

The token holding, k∗i,t, decreases in Pt and increases in At, µ
P
t , ui, and Nt.

8The hazard rate, g(u)
1−G(u) , is increasing in u if and only if 1 − G(u) is log-concave. This assumption is

common in the theory literature, for example, to avoid the complicated “ironing” of virtual values.
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Token Pricing. First, we define the participants’ aggregate transaction need as

St :=

∫ U

ut

eug (u) du, (13)

the integral of eui of participating agents. Substituting optimal holdings in Equation (9) into

the market clearing condition in Equation (7), we obtain the Token Pricing Formula:

Pt =
NtStAt
M

(
1− α
r − µPt

) 1
α

. (14)

The token price increases in Nt – the larger the user base is, the higher trade surplus

individual participants can realize by holding tokens, and stronger the token demand. The

price-to-user base ratio, a natural valuation metric in our setting and practice, increases in

the platform productivity, the expected price appreciation, and the network participants’

aggregate transaction need, while it decreases in the token supply M .

Industry practices broadly corroborate the formula, for exmaple, by incorporating DAA

(daily active addresses) and NVT Ratio (market cap to daily transaction volume) in token

valuation framework. But instead of heuristically aggregating such inputs into a pricing

formula, we derive both token pricing and user adoption as endogenous equilibrium outcomes.

Since ut decreases in µPt , the RHS of Equation (14) increases in µPt , so At and Pt uniquely

pin down µPt , which contains the first and second derivatives of Pt to At by Itô’s lemma.

Therefore, the equation implies a unique mapping from At, P (At), and P ′ (At) to P ′′ (At).

Specifically, the token pricing formula given in Equation (14) implies the following differential

equation that characterizes P (At) as a function of state variable At.

µAAt

(
dPt
dAt

)
+

1

2

(
σA
)2
A2
t

d2Pt
dA2

t

+ (1− α)

(
NtStAt
MPt

)α
Pt − rPt = 0. (15)

We solve the preceding ODE for P (At) with the following boundary conditions. The first is

lim
At→0

P (At) = 0, (16)
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which means that the token price is zero when the platform is permanently unproductive

(At = 0 is an absorbing state).

Next, we discuss remaining boundary conditions using token price under full adoption.

As Nt = 1, the aggregate transaction demand, St, is equal to S, where

S ≡
∫ U

U

eug (u) du, (17)

is the sum (integral) of all agents’ eui . Let P (At) denote token price under full adoption.

As we focus on the fundamentals, the token price dynamics is fully determined by the

underlying productivity growth, i.e., µPt = µA. Therefore, we obtain the following Gordon

Growth Formula for token price under full adoption:

P (At) =
SAt
M

(
1− α
r − µA

) 1
α

, (18)

where S is given by Equation (17). Let Ã denote the lowest value of At that induces full

adoption. The value-matching and smooth-pasting conditions hold at Ã:

P (Ã) = P (Ã) and P ′(Ã) = P
′
(Ã). (19)

The next proposition follows directly.

Proposition 2 (Markov Equilibrium). With At being the state variable, the equilibrium

token price P (At) solves the ODE from Equation (14) subject to boundary conditions given

by Equations (16) and (19). Given the token price dynamics, agents’ optimal token holdings

and participation decisions together with the user base are as described in Proposition 1.

We numerically solve the ODE and further characterize the equilibrium in Sections 5

and 6. Figure 2 summarizes the key economic mechanism discussed thus far, where the blue

dotted, black solid, and red dash arrows show respectively the user-base externality, the

transaction motive of token holdings, and the investment motive of token holdings. Tokens

allow users to capitalize on the future growth of user base, and thereby, encourages early
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date t date t+ dt date t+ 2dt ...

dZt > 0

Productivity At ↑

Token flow utility ↑

User base Nt ↑

Productivity At+dt ↑

Token flow utility ↑

User base Nt+dt ↑

Token price Pt+dt ↑

µA > 0
→ µP

t > 0

Productivity At+2dt ↑

Token flow utility ↑

User base Nt+2dt ↑

Token price Pt+2dt ↑

µA > 0
→ µP

t+dt > 0

Figure 2: The Economic Mechanism. The black solid arrows point to the increases of the current and
future (expected) levels of productivity A, which lead to higher flow utilities of tokens, and in turn, larger
user bases N . The blue dotted arrows show that increases in user base result in even higher flow utility
due to the contemporaneous user-base externality. Finally, more users push up the token prices P in future
dates, which feed into a current expectation of price appreciation and greater adoption (red dash arrows).

adoption — a point we elaborate in the next two sections.

Remark: token and platform competition. Many blockchain platforms accommodate

not only their native tokens but also other cryptocurrencies. For example, any ERC-20

compatible cryptocurrencies are accepted on the Ethereum blockchain.9 To address this issue

in the current framework, we may consider an alternative upper boundary of At. Define ψ

as the cost of creating a new cryptocurrency that is a perfect substitute with the token we

study because it functions on the same platform and therefore faces the same productivity

and agents’ need for transactions. This creates a reflecting boundary at A characterized by

a value-matching condition and a smooth-pasting condition:

P
(
A
)

= ψ and P ′
(
A
)

= 0. (20)

9ERC-20 defines a common list of rules that all tokens or cryptocurrencies should follow on the Ethereum
blockchain. Gandal and Halaburda (2014) consider competition among cryptocurrencies from perspectives
that differ from our focus on platform productivity.
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When token price increases to ψ, entrepreneurs outside of the model will develop a new

cryptocurrency that is compatible with the rules of our blockchain system. So, the price

level never increases beyond this value.10 Similarly, we may consider potential competing

platforms, and interpret ψ as the cost of creating a new blockchain-based platform and its

token, which together constitute a perfect substitute for our current system. This creates

the same reflecting boundary for token price.

4 Benchmark Economies

This section analyzes two benchmark economies to help us understand the roles of to-

kens. The first is the tokenless economy, which features a platform where the medium of

exchange is the numeraire good. By comparing our token-based economy with this bench-

mark, we highlight how introducing tokens affects user adoption. The second benchmark is

the first-best economy, the solution to a central planner’s problem. It helps us understand

the welfare consequences of introducing tokens, and in particular, how tokens alleviate the

lack of internalizing user network effects and the resulting under-adoption.

4.1 Tokenless Economy

In our tokenless economy, the numeraire good is the medium of exchange and agents only

have transactional motives. The agent’s profit is given by

dyi,t = max

{
0, max

xi,t>0

[
(xi,t)

1−α (NtAte
ui)α dt− φdt− xi,trdt

]}
. (21)

Unlike Equation (6) for the tokenized economy, as there is no native token, the token price

fluctuation, µPt , no longer appears in the agent’s profits.

Conditional on joining the platform (i.e., xi,t > 0), the agent chooses xi,t as follows:

x∗i,t = NtAte
ui

(
1− α
r

) 1
α

. (22)

10The requirement that P ′ (At) is equal to zero rules out jumps of token prices at the reflecting boundary.
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The maximized profit when joining the platform is then

NtAte
uiα

(
1− α
r

) 1−α
α

− φ. (23)

An agent joins the platform only when Expression (23) is positive. That is, agent i partici-

pates if and only if ui ≥ uNTt , where uNTt is the endogenous threshold given by

uNTt = − ln (Nt) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r

)
. (24)

Here, the superscript “NT” refers to the “no-token” case. The user base is thus given by

NNT
t = 1−G

(
uNTt

)
. (25)

Equations (24) and (25) jointly determine uNTt and NNT
t as functions of At. Additionally,

the user base, NNT
t , increases in At, which can be shown as a special case covered by of

Proposition 1. We define ANT by imposing µPt = 0 in Proposition 1 such that for At > ANT ,

there exists a unique non-degenerate solution of NNT
t if the hazard rate of g (u) is increasing.

Next, we consider the social planner’s problem by internalizing network externalities.

4.2 The First-best (FB) Economy

Given a user base Nt, the socially optimal holdings of transaction medium (goods) is still

x∗i,t = NtAte
ui

(
1− α
r

) 1
α

. (26)

Let Ut denote the set of participating users and in equilibrium the mass is equal to Nt. The

total transaction surplus (if positive) is given by

∫
i∈Ut

[
αNtAte

ui

(
1− α
r

) 1−α
α

− φ
]
di = Nt

[
α

(
1− α
r

) 1−α
α

At

∫
i∈Ut

euidi− φ
]
. (27)

To maximize this welfare flow, the planner optimally sets Nt = 1, i.e., Ut being the full
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set of agents, unless given Nt = 1, the objective (27) is negative, in which case it is socially

optimal to have zero adoption. The switching from zero adoption to full adoption happens

at

AFB = φ

[
α

(
1− α
r

) 1−α
α

S

]−1

, (28)

where S is given by Equation (17). Given that S <∞, welfare maximization has a bang-bang

solution, resulting in full adoption if At ≥ AFB and zero adoption otherwise.

We argue that there are more agents participating on the platform in the FB economy

than in our tokenless economy, which means the productivity thresholds for adoption in the

two economies satisfies AFB < ANT (proof in the appendix). This result follows from that

the social planner internalizes the positive externality of an agent’s adoption on other users.

How does the decentralized equilibrium of tokenized economy differ from the planner’s

solution? On the one hand, tokens induce an investment motive in agents’ adoption decision,

alleviating the under-adoption problem in the decentralized tokenless equilibrium. On the

other hand, over-adoption may happen in the sense that Nt > 0 even when At < AFB.

In Appendix C, we use data on token pricing and adoption to discipline our choices

of parameter values for numerical solutions. Next, we combine the analytical results and

numerical analysis to discuss the roles of tokens and asset pricing implications of endogenous

platform adoption.

5 The Roles of Tokens

In this section, we analyze the adoption dynamics and highlight the roles of tokens by

comparing the token-based economy with the two benchmark economies in the previous

section. We illustrate the adoption acceleration and user-base volatility reduction effects of

tokens with the numerical solutions.
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5.1 User-Adoption Acceleration

Among the purported reasons for this common practice of introducing tokens, entrepreneurs

foremost believe that using tokens can “bootstrap” the community. Heuristically, practition-

ers have argued that tokens help grow the ecosystem and allow all participants to benefit

from the growth prospect of platforms, although no formal analysis has been provided. We

now examine this argument formally in our framework.

When tokens are introduced as the platform’s medium of exchange, token prices reflect

agents’ expectations of future productivity growth and user adoption. Tokens therefore

accelerate adoption because agents joining the community enjoy not only the trade surplus

but also the investment return from token price appreciation.11

The solid line in Figure 3 shows that the user base Nt is an S-shaped function of ln (At).
12

When the platform’s productivity At is low, the user base Nt barely responds to changes

in At. In contrast, when At is moderately high, Nt responds much more to changes in At.

The growth of user base feeds on itself – the more agents join the ecosystem, the higher

transaction surplus each derives. User adoption eventually slows down when the pool of

newcomers gets exhausted. We also plot the scattered data points. We provide details on

sample construction in Appendix C.

Figure 3 also compares the user adoption in tokenized and tokenless (decentralized)

economies. The former strictly dominates the latter. Both economies reach full adoption

when At becomes sufficiently large. Notice that the adoption thresholds in Equations (11)

and (24) differ by the µPt term. When µPt > 0, Nt > NNT
t given At, where Nt is determined

by Equation (12). In other words, the expected token price appreciation induces a higher

level of adoption than the case without tokens.

Token price appreciation critically depends on the growth of At. When µA > 0, agents

forecast a higher token price and the investment motive accelerates user adoption. Without

11When Tencent QQ introduced Q-coin, a case to which our model is applicable, many users and merchants
quickly started accepting them even outside the QQ platform, tremendously accelerating adoption and token
price appreciation. Annual trading volume reached billions of RMB in the late 2000s and the government
had to intervene. See articles China bars use of virtual money for trading in real goods and QQ: China’s
New Coin of the Realm? (WSJ).

12The curve starts at ln (At) = −48.35 (At = 1e − 21), a number that we choose to be close to zero, the
left boundary. The curve ends at ln (At) = 18.42 (At = 1e8), the touching point between P (At) and P (At).
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Figure 3: Dependence of User Base on Platform Productivity. This graph shows
Nt, the user base of tokenized economy (blue solid curve), data of normalized active user
addresses (gray scattered dots), and the user base of tokenless economy (red dash line)
against ln (At), the productivity. The dotted vertical line marks the level of productivity,
beyond which the planner chooses full adoption, and below which the planner chooses zero
adoption.

tokens, this investment-driven demand is shut down. Therefore, introducing tokens help

capitalize future productivity growth and grow promising platforms.13 In contrast, when

µA < 0, the expected token depreciation (µPt < 0) precipitates user exits and the demise of

the platform. Our numerical analysis focuses on the case where µA > 0.

For comparison, we also plot in Figure 3 the first-best solution via the dotted vertical line

at ln
(
AFB

)
, which is given by Equation (28). Recall that the planner chooses full adoption

if At ≥ AFB and zero adoption otherwise. Relative to the first-best economy, a tokenless

economy features under-adoption and introducing tokens helps mitigate this inefficiency.

Token-based economy may also lead to over -adoption because it is possible that Nt > 0 even

when At < AFB. Under the current set of parameter values, over-adoption is not a severe

13We note that a predetermined token supply schedule is important. If token supply can arbitrarily
increase ex post, then the expected token price appreciation is delinked from the the productivity growth
and the resulting increase of user base and token demand. Pre-determinacy or commitment can only be
credibly achieved through the decentralized consensus mechanism empowered by the blockchain technology.
In contrast, traditional monetary policy has commitment problem (Barro and Gordon (1983)).
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problem because Nt is extremely close to zero for At < AFB.

5.2 User-base Volatility Reduction

Next, we compare the user base volatility in tokenized and tokenless economies. Note

that in the first-best economy, because the adoption is either zero or full, user base volatility

is not an issue.

To derive the dynamics of Nt, we first conjecture the following equilibrium diffusion

process:

dNt = µNt dt+ σNt dZ
A
t . (29)

In the appendix, we show that in the tokenless economy

σNt =

(
g
(
uNTt

)
1− g (uNTt ) /NNT

t

)
σA (30)

and in the tokenized economy

σNt =

(
g (ut)

1− g (ut) /Nt

)[
σA +

(
1− α
α

)(
σµ

P

t

r − µPt

)]
, (31)

where σµ
P

t is the diffusion of µPt as defined below:

dµPt = µµ
P

t dt+ σµ
P

t dZA
t . (32)

We know that Nt follows a reflected (or “regulated”) diffusion process bounded in [0, 1].

Comparing Equations (30) and (31), we see that introducing tokens alters the user-base

volatility through σµ
P

t , which is the volatility of expected token appreciation, µPt , as defined

in Equation (32). Embedding a native token may either amplify or dampen the shock effect

on the user base, depending on the sign of σµ
P

t . By Itô’s lemma, σµ
P

t =
dµPt
dAt

σAAt, so the sign

of σµ
P

t depends on whether µPt increases or decreases in At.

Intuitively, µPt decreases in At (and thus, σµ
P

t < 0), precisely because of the endogenous

user adoption. Consider a positive shock to At, which has a direct effect of increasing Nt due
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Figure 4: User-Base Volatility Reduction Effect. The left panel of this graph shows the
volatility of user base, σNt , in the tokenized (blue solid curve) and tokenless (red dotted curve)
economies over adoption stages, Nt. The right panel shows the expected (risk-adjusted) token
price change, µPt , (i.e., under the risk-neutral measure) across different levels of blockchain
productivity, ln (At). The black dotted line marks the expected growth rate of blockchain
productivity.

to higher transaction surplus. For a large Nt, the potential for Nt to grow decreases, so does

the expected token appreciation (i.e., µPt ) which discourages user adoption. The endogenous

token price dynamics therefore moderate Nt’s increase. Similarly, consider a negative shock

to At. The token price channel mitigates the decrease in Nt, because given µA > 0, a lower

current level of adoption implies a stronger potential for the user base to grow in the future.

Overall, introducing token can reduce the user-base sensitivity to shocks.

Next, we illustrate in Figure 4 how tokens reduce user-base volatility. The left panel plots

σNt , and compares the cases with and without token across different stages of adoption. Note

that by fixing Nt, we also fix the adoption thresholds, i.e., ut and uNTt , so the first brackets in

Equations (30) and (31) have the same value. Therefore, the only difference between the two

curves of user-base volatility arises from σµ
P

t , the volatility of expected token appreciation.

Both curves start and end at zero, consistent with the S-shaped development in Figure 3 in

which both curves start flat and end flat. This volatility reduction effect is more prominent
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in the early stage of development when At and Nt are low.

The right panel of Figure 4 plots µPt , the risk-adjusted expected token price appreciation,

against ln (At). It shows their negative relation that causes σµ
P

t < 0, which generates the

volatility reduction effect. When At is low and Nt is low, token price is expected to increase

fast, reflecting both the future growth of At and Nt. As At and Nt grow, the pool of agents

who have not adopted (1−Nt) shrinks and there is less potential for Nt to grow. As a result,

the expected token appreciation declines.

Given the roles of the tokens in accelerating and stabilizing user adoption as our model

reveals, entrepreneurs may want to introduce them in a platform. For example, suppose the

platform can collect a fee from the users, greater adoption would increase the revenue of the

platform and stabler user base means stable revenue.

6 Token Price Dynamics with User Adoption

In this section, we discuss how endogenous user adoption leads to nonlinear price dy-

namics that are broadly consistent with empirical observations. In particular, we examine

three key asset-pricing issues concerning tokens: the cross section of token pricing, excess

volatility, and “bubbly” price patterns (run-ups followed by crashes in token prices).

Token price over adoption stages. As inputs in our model such as ln (At) are difficult

to measure, in Figure 5 we relate two key observables, the logarithmic token price ln(Pt) and

the user base Nt, both functions of At in equilibrium. Token price increases quickly with

adoption in the early stage, changes gradually in the intermediate stage, and speeds up again

once the user base reaches a sufficiently high level. The two price run-ups in the initial and

final stages of adoption correspond to the slow user base growth in these two stages relative

to token price changes.

This figure helps us understand the cross-sectional differences in token pricing. To ex-

posit the key result, we first sort blockchain platforms into three categories in term of their

adoption stages: early, intermediate, and late. For two blockchain platforms in the early

stage, a small difference of Nt between them can generate a very large difference in the mar-
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Figure 5: Token Price Dynamics over Adoption Stages. This graph shows the log
token price across adoption stages, Nt (blue solid curve), and data as scattered dots.

ket capitalization of tokens (PtM), as seen in Figure 5. Essentially the same result holds in

the late stage. In contrast, in the intermediate stage, even a large difference of Nt between

the two platforms only yields a small difference of ln(Pt).

Price volatility dynamics. The shocks to platform productivity are transmitted to token

price through users’ decision on adoption and token holdings. In fact, token-price volatility

σPt is generally larger than σA, the productivity volatility, as Figure 6 illustrates. To see

the intuition, consider a positive shock to At that directly increases the utility flow of token

holdings. User adoption increases as a consequence, which leads to an even higher utility

flow (as Nt enters into the utility flow). This feedback effect amplifies the shock’s impact on

token price, which implies that endogenous user adoption amplifies volatility.

Importantly, our model features a new form of endogenous risk that is unique to platform

economics. The volatility of token price is larger than the productivity volatility (exogenous

risk) in equilibrium due to the endogenous formation of user base. The amplification con-

stitutes an endogenous asset-price risk that is distinct from the fire-sale risk triggered by

the balance-sheet channel in the macro-finance literature (e.g., Brunnermeier and Sannikov,

2014). Note that under full adoption Nt = 1, Equation (18) reveals that the ratio of Pt to At
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Figure 6: Endogenous Productivity and Volatility Amplification. This graph shows
the ratio of token price volatility, σPt , to productivity volatility, σA, which quantifies the
strength of volatility amplification by the endogenous user adoption. The solid line shows
the baseline model. The dash line shows the model with endogenous platform productivity.

is a constant, so σPt = σA and the endogenous risk disappears. The network effect induces

strategic complementarity in agents’ adoption decision, and thereby, amplifies the impact of

fundamental shock. This mechanism is related to the literature on strategic complementarity

and fragility (e.g., Goldstein and Pauzner, 2005). Here the endogenous risk from strategic

complementarity manifests itself in the equilibrium asset (token) price.

Figure 6 also shows that the token price volatility exhibits non-monotonic dynamics as

the platform productivity grows: σPt shoots up in the early stage, gradually declines, and

eventually converges to σA as Nt approaches one. This dynamics is broadly consistent with

the following observations: token price volatility for a nascent platform is large and the cross-

sectional variation of token price volatility for nascent platforms (differing in productivity)

tends to be large.

Endogenous platform productivity. Our analysis thus far has taken the platform pro-

ductivity process as exogenous. In reality, many token and cryptocurrency applications

feature an endogenous dependence of platform productivity on the user base.
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A defining feature of blockchain technology is the provision of consensus on decentralized

ledgers. In a “proof-of-stake” system, the consensus is more robust when the user base is large

and dispersed because no single party is likely to hold a majority stake; in a “proof-of-work”

system, more miners deliver faster and more reliable confirmation of transactions, and miners’

participation in turn depends on the size of user base (for example, through transaction

fees). More broadly, the more users on the platform, the more economic activities taking

place (i.e., higher At). Moreover, a greater user base attracts more resources and research

onto the platform, accelerating the technological progress on the platform and creating a

positive feedback loop.

The endogeneity of blockchain productivity and its dependence on the user base highlight

the decentralized nature of this new technology. To capture this positive feedback feature

between productivity and user base, we generalize the process of At as follows:

dAt
At

=
[
µA (1− ω) + µAωNt

]
dt+ σAdZA

t , (33)

where ω > 0. Under this specification, the expected growth rate of At is µA under full

adoption and below µA when Nt < 1. Solving the Markov equilibrium under endogenous

productivity only requires to replace µA in Equation (15) with
[
µA (1− ω) + µAωNt

]
.

Endogenous productivity has critical implications on how fundamental shocks are trans-

mitted to token price fluctuations. The growth rate of At is no longer i.i.d. and the shock

impact on At becomes more persistent. Consider a positive shock. Not only the current At

increases, but through Nt, the growth rate of At increases, propagating the shock impact into

the future. This amplifies the volatility of token price, which is a forward-looking measure of

productivity and adoption. Figure 6 shows that the ratio of σPt to σA is higher with endoge-

nous productivity than with exogenous productivity.14 In summary, the decentralized nature

of blockchain technology and the associated endogenous platform productivity amplify the

transmission of volatility of fundamentals into token price volatility.

14The parameter ω is set to 0.9 for illustrative purpose.
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Figure 7: The “Bubbly” Behavior of Token Price. This graph plots the ratio of
token price, P (At), to the long-run (full-adoption) value of token, P (At), which shows how
endogenous adoption shapes the token price dynamics. The solid line shows the baseline
model. The dash line shows the model with endogenous systematic risk.

“Bubbly” token price. In the last two years, the prices of several prominent cryptocur-

rencies experienced significant run-up followed by crash and subsequent stabilization. We

show that such price dynamics can arise in a rational model with endogenous adoption.

So far we have set up and analyzed the model under the risk-neutral measure. Next, we

explicitly model risk premium by postpulating a geometric Brownian motion for At under

the physical measure,
dAt
At

= µ̂Adt+ σAdẐA
t , (34)

where µ̂A is a constant drift and ẐA
t is a standard Brownian motion.15 We assume that the

stochastic discount factor (SDF), Λt, evolves as

dΛt

Λt

= −rdt− ηdẐΛ
t , (35)

where ẐΛ
t is the standard Brownian motion under the physical measure and η is the constant

market price of risk.

Let ρt denote the instantaneous correlation coefficient between the productivity shock,

15By diffusion invariance theorem, the volatility parameter is equal to σA.
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dẐA
t , and the SDF shock, dẐΛ

t . To model the endogenous beta of platform productivity, we

allow ρt to depend on Nt. Suppose that dρ (Nt) /dNt > 0, which means that the productivity

beta increases as the user base grows. As the technology becomes more “mainstream,” shocks

to it become increasingly systematic. This assumption is inspired by the adoption-dependent

beta of new technologies in Pástor and Veronesi (2009). By using Girsanov’s theorem, we

obtain the following productivity process under the risk-neutral measure,

dAt
At

=
[
µ̂A − ηρ (Nt)σ

A
]
dt+ σAdZA

t . (36)

When the productivity shock becomes more correlated with the SDF shock, investors demand

a higher risk premium, which lowers the risk-adjusted growth of productivity. In other words,

the risk-neutral expected growth rate of At is µ̂A−ηρ (Nt)σ
A, is lower. To solve the Markov

equilibrium, we simply replace µA in Equation (15) with this risk-adjusted drift of At.

There are thus two opposing forces that drive Pt as At grows. On the one hand, the

mechanism that increases Pt is still present: when At directly increases the flow utility of

token, or indirectly through its positive impact on Nt, token price increases. On the other

hand, the risk premium increases as Nt increases, so the risk-adjusted growth of At declines,

which in turn decreases Pt. The former channel could dominate in the early stage of adoption

while the latter channel dominates in the late stage of adoption. Therefore, Pt first rises with

Nt and then declines as Nt reaches a sufficiently high level, which resembles a bubble as shown

in the left panel of Figure 7.16

7 Conclusion

We provide a tractable dynamic model of token pricing and platform adoption. Plat-

forms create value by supporting special economic activities and their tokens derive value by

facilitating transactions among platform users. As a result, token valuation reflects users’

endogenous participation and the associated network externalities. User base also plays a

critical role in explaining the cross-section variation of token pricing, the dynamics of token

16In the numerical solution, we set µ̂A = 4% and ρ (Nt) = µ̂ANt/3 for illustrative purposes.
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price volatility, and the run-up and crash of token prices.

By comparing platforms with and without tokens, our model demonstrates the effects of

introducing tokens on agents’ adoption decisions. For platforms with growing productivities,

agents’ expectation of token price appreciation encourages early adoption, and thus, enhances

welfare by intertemporarily internalizing the user network externalities. Introducing tokens

also reduces the volatility of user base because agents’ expectation of long-term growth in

token value weakens the impact of temporary productivity shocks on the user base.

Our model accommodates several extensions. This paper focuses on user activities, i.e.,

the demand side of platform infrastructure. On the supply side, agents contribute to the

infrastructure in exchange for token-based rewards. Combining demand-side analysis with

supply-side protocols can deliver new insights on platform design (e.g., Fanti, Kogan, and

Viswanath, 2019). Another direction is the role of tokens in platform competition, which

has been missing in the literature of platform economics (e.g., Rochet and Tirole, 2003).

Platforms may serve similar economic activities. Users’ adoption decision and token prices

shall naturally reflect the platforms’ competitive advantage.
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Appendix A – Transaction Surplus and Flow Utility

In this section, we provide theoretical foundations for our specification of platform trans-

action surplus in Equation (1). We first present a general model based on transaction costs

that applies to all platform tokens (not necessarily blockchain-based), which essentially cap-

tures a form of convenience yield (see, e.g., Cochrane, 2018), and then discuss a case that

is specific to blockchain platform. Our goal here is not to microfound every application

scenario, but to illustrate potential settings that support our specification.

A model of convenience yield. Agents have investment opportunities that occur at

Poisson arrival times, {Tn}+∞
n=1, with time-varying and agent-specific intensity, λi,t. At a

given Poisson time, Tn, agent i is endowed with a technology, ωiF (·), that transforms labor

into goods, and is matched with another agent who can supply the required labor input.

Agent-specific productivity is captured by ωi. To simplify the exposition, we assume that

the labor supply has a constant marginal cost of one, and the supplier breaks even, so the

full trade surplus is enjoyed by agent i. This setup of uncertain lumpy transactions follows

the Baumol-Tobin model of Alvarez and Lippi (2013).

Agent i’s labor demand, denoted by h, is not restricted by the real balance of token hold-

ings, Ptki,Tn−, where ki,Tn− denotes the units of tokens carried to Tn. Since the focus of this

paper is not on financial constraints, we allow the agent to borrow dollars (an instantaneous

loan) at zero cost, so h may exceed agent i’s wealth at the moment. The production is done

immediately, and the loan is repaid immediately by the goods. So, given a competitive credit

market, the loan rate is zero.

The lumpy payment for labor incurs a transaction cost that is proportional to the total

payment value, δh (δ > 0), but using tokens as means of payment save the transaction cost

by U (Ptki,Tn−) (U ′ > 0, U ′′ < 0) because agent i does not need to exchange dollars for

tokens, the required means of payment on the platform.

Agent i maximizes the investment profit, which is a jump in wealth,

max
h

ωiF (h)− h− (δh− U (Ptki,Tn−)) , (37)

where the last term is the transaction cost. The optimal labor demand, h∗, is given by

ωiF
′ (h∗) = 1 + δ, (38)
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so the marginal value of production is equal to the marginal cost of labor plus the transaction

cost, δ. We can substitute the constant h∗ into the investment profit to have

ωiF (h∗)− (1 + δ)h∗ + U (Ptki,Tn−) . (39)

We assume that ωi is sufficiently high so h∗ ≥ Ptki,Tn−. The conversion between the local

currency (token) and other assets can be costly, especially when a lumpy transaction is

required within a short period of time. By holding tokens, agents save such costs. Linking

transaction costs to the monetary value of assets has a long tradition in economics (Baumol,

1952; Tobin, 1956; Duffie, 1990).

Therefore, at time t, agent i has an expected gain of λi,tU (Ptki,t) dt by holdings ki,t units

of tokens for dt. To obtain a tighter analytical characterization of the equilibrium, we specify

λi,t = (NtAte
ui)α, α ∈ (0, 1). A larger community (Nt) makes it easier to find transaction

counterparties. A higher platform quality (At) reflects a more efficient matching mechanism

or the fact that the economic transactions supported by the platform are more popular.

And ui captures agent-specific transaction needs. We specify U (Ptki,t) = χ (Ptki,t)
1−α, so

the expected transaction costs saved are

λi,tU (Ptki,t) dt = (NtAte
ui)α (Ptki,t)

1−α χdt. (40)

In the following we set χ = 1 because its scaling effect can be subsumed by the level of At.

We may reinterpret h as goods or services other than labor, and the investment profit as a

burst of consumption or utility value from transactions. The foundation of this specification

of trade surplus is two-fold: (1) the arrival of transaction opportunities depends on the user

base, the platform quality, and agent-specific factors; (2) holding tokens on the tokenized

platform save transaction costs for lumpy payments.

Note that the same setup can also generate the trade surplus for a tokenless economy

where transaction is settled using the numeraire good, so in the main text, we assume the

same functional form of transaction surplus. In a tokenless economy, agents hold assets that

yield a risk-adjusted return of r and dollars worth of xi,t. The transaction cost, δh, is thus

the cost of immediately exchanging a lumpy chuck of assets for cash. Holding cash saves

this cost by U (xi,t). If external financing is required, the per unit cost of transaction, δ,

also captures the difficulty to raise funds in lumpy amounts. The concavity of U (·) can be

motivated by models of cash holdings that recognize cash carry costs and external financial
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constraints (e.g., Bolton, Chen, and Wang, 2011).

Staking tokens. While the above transaction-cost based model applies to platform tokens

that serve as means of payment, we next give another theoretical foundation to illustrate:

(i) although we focus on tokens that serve explicitly as means of payment on platforms, our

theory applies more generally to all tokens that provide users utilities specific to the underly-

ing platform technology; (ii) blockchain-based platforms provide novel forms of transaction

surplus from holding tokens on platforms and further motivate our specification of token

flow utility.

Many blockchain-based platforms feature users providing service to peers to make a

profit. For example, Filecoin, Golem, Storj, Elastic, etc., all have “storage miners” who help

clients store digital files for a profit paid in native tokens. Oftentimes, storage miners have

to “stake” native tokens (i.e., post it as collateral) in order to win the chance to service

clients. In fact, staking is a common practice on blockchain platforms to encourage value-

creating activities among their users. It goes beyond validating transactions and producing

blocks within consensus mechanisms such as Proof-of-Stake (POS) and Distributed Proof-

of-Stake (DPOS). In general, holding/staking tokens may enable network participants to

potentially receive access to exclusive features of the platform, partake of business activities,

or receive status recognition. For example, OmiseGO (OMG), the first ERC20 tokens on

Ethereum sold via an ICO to reach unicorn status (US$1 billion market cap) in August

2017 (coinmarketcap.com), has validators deposit OMGs in staking contracts to validate

transactions. OmiseGo selects the validator based on who has staked the highest token to

validate the transaction and it performs the task. Depending on the performance of the

validator, the validator will either receive rewards or penalties. Filecoin, VentureFusion,

Numerai, etc., all feature some forms of staking.

Now suppose a storage miner on the platform has a realized storage space euiα, and

is waiting to be matched with clients demanding decentralized storage (similar to a labor-

market search-and-matching scenario). Potential client demand (analogous to the number

of job seekers) is proportional to Nt, the user base of the platform, whereas the matching

effort of the storage miner is proportional to staking amount xi (similar to job vacancies).

Then if the platform has a matching efficiency of Aα, a matching function with constant

return to scale (e.g., Pissarides, 2000) would yield the storage miner a payoff of

euiαAαNα
t (Ptki,t)

1−α = (Ptki,t)
1−α(ANte

ui)α, (41)
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which exactly gives the surplus flow in Equation (1). The storage miner then takes back the

same number of tokens staked after providing the service for dt.

In the case above, it is crucial that a service provider (storage miner in the case of Filecoin)

needs to stake/hold native tokens to have a chance of being matched with a customer. If she

can match with a customer and instantaneously exchange tokens for the numeraire good,

the the velocity of native tokens can be infinite, resulting in price indeterminacy.

Other tokens. While our focus is on a majority of tokens whose value derives from the

productivity of underlying platforms and user network effects, we acknowledge that in reality,

there exists a variety of tokens that serve purposes other than facilitating platform-specific

transactions. Digital currencies developed by central banks serve general payment purposes.

They are typically not tied to specific user networks, and their adoption is driven by policy

and legal decisions. There are also tokens that enable the sharing of future corporate revenues

or the distribution of products and services. Such security tokens can be valued using

traditional discounted cash-flow models, and are therefore not our focus.

Moreover, our model does not capture the more complex interdependence of platforms

and their tokens. For example, Litecoin and Dogecoin are “altcoins” — variants of the

original open-sourced Bitcoin protocol to enable new features. Therefore, the productivity

of their platforms inherits significantly from that of the Bitcoin blockchain. Other examples

include the “AppCoins”, what entrepreneurs often sell through the initial coin offerings

(ICOs), that are developed for specific applications (e.g., Gnosis and Golem) and are built

on existing blockchain infrastructures (e.g., Ethereum or Waves).

Appendix B - Proofs

B1. Proof of Proposition 1

Figure 1 illustrates the determination of Nt given At and µPt , which we take as a snapshot

of the dynamic equilibrium with time-varying productivity and expectation of price change.

The proof below takes the following steps. First, we show that given µPt , there exists a A
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such that for At = A > A, the corresponding response curve,

R
(
n;A, µPt

)
= 1−G

(
u
(
n;A, µPt

))
(42)

= 1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
, (43)

crosses the 45o line at least once in (0, 1], and for any value of At = A < A, the response curve

never crosses the 45o line in (0, 1]. After proving the existence of Nt > 0 for At ∈ [A,+∞),

we prove the uniqueness given the increasing hazard rate of g (u). Finally, we prove that Nt

increases in µPt . Before we start, for any At = A > 0, we define the value of its response

function at n = 0: R
(
0;A, µPt

)
= 0. This is consistent with that given a zero user base, each

agent derives zero transaction surplus from token holdings and chooses not to participate.

Note that limn↓0R
(
n;A, µPt

)
= 0, so the response function is continuous in n.

Given µPt , we define a mapping, A(n), from any equilibrium, non-zero value of user base,

n ∈ (0, 1], to the corresponding value of At, i.e., the unique solution to

1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
= n, ∀n ∈ (0, 1]. (44)

This mapping is a continuous mapping on a bounded domain ⊆ (0, 1]. Then by the Least-

Upper-Bound-Property of real numbers, the image set of this mapping, {A(n), n ∈ (0, 1)},
has an infimum, which we denote by A. Now, for At = A, consider a n (A) ∈ (0, 1] such that

Equation (44) holds. For any A > A, the LHS of Equation (44) is higher than the RHS, i.e.,

R
(
n (A) ;A, µPt

)
> n (A), so that the response curve of At = A is above the 45o line at n (A).

Next, because the response function R
(
n;A, µPt

)
is continuous in n and R

(
1;A, µPt

)
≤ 1 by

definition in Equation (43), i.e., it eventually falls to or below the 45o line as n increases,

there must exist a n (A) ∈ (0, 1] such that when at At = A, Equation (44) holds by the

Intermediate Value Theorem. Therefore, we have proved that for any At = A > A, there

exists a non-zero user base. Throughout the proof, we fix µPt , so A is a function of µPt .

Next, given g(u)
1−G(u)

is increasing, we show that the response curve crosses the 45o line

exactly once when At ∈ [A,+∞). First note that R
(
n;At, µ

P
t

)
− n either has positive

derivative or negative derivative at n = 0. If it has positive derivative (i.e., the response

curve shoots over the 45o line), then at n′, the first time the response curve crosses the 45o

line again, the derivative of R
(
n;At, µ

P
t

)
−n must be weakly negative at n′, i.e., the response
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curve crosses the 45o from above,

g
(
u
(
n′;At, µ

P
t

)) 1

n′
− 1 ≤ 0. (45)

Now suppose the response curve crosses the 45o line for the second time from below at

n
′′
> n′, so the derivative of R

(
n;At, µ

P
t

)
−n at n′′ must be weakly positive, and is equal to

g
(
u
(
n′′;At, µ

P
t

)) 1

n′′
− 1 =

g
(
u
(
n′′;At, µ

P
t

))
1−G (u (n′′;At, µPt ))

− 1 (46)

<
g
(
u
(
n′;At, µ

P
t

))
1−G (u (n′;At, µPt ))

− 1

=
g
(
u
(
n′;At, µ

P
t

))
n′

− 1

< 0,

where the first inequality comes from the increasing hazard rate and the fact that u
(
n;At, µ

P
t

)
is decreasing in n for n ∈ (0, 1], and the second inequality follows from (45) and the fact that

the response curve crosses the 45o line at n′ (i.e., n′ = R
(
n′;At, µ

P
t

)
= 1−G

(
u
(
n′;At, µ

P
t

))
).

This contradicts the presumption that the response curve reaches the 45o line from below

(and the derivative of R
(
n;At, µ

P
t

)
− n is weakly positive). Therefore, we conclude that for

At ∈ [A,+∞), there exists a unique adoption level n. Now if R
(
n;At, µ

P
t

)
− n has negative

derivative at n = 0, then in the previous argument, we can replace n′ with 0 and show that

there does not exist another intersection between the response curve and the 45o line beyond

n = 0. Therefore, only if R
(
n;At, µ

P
t

)
− n has positive derivative at n = 0, do we have a

positive (non-degenerate) adoption level.

Finally, we show that the non-degenerate adoption level, Nt, is increasing in µPt . Consider

µ̃Pt > µPt . Suppose the contrary that their corresponding adoption levels satisfy Ñt ≤ Nt.

Because we have proved that the response curve only crosses the 45o line only once and from

above, given Nt, we have

1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
≥ n, ∀n ∈ (0, Nt] . (47)
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We know that by definition,

Ñt = 1−G
(
u
(
Ñt;At, µ̃

P
t

))
= 1−G

(
− ln

(
Ñt

)
+ ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µ̃Pt

))
> 1−G

(
− ln

(
Ñt

)
+ ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
≥ Ñt, (48)

where the first inequality uses µ̃Pt > µPt and the second inequality uses the fact that

Ñt ∈ (0, Nt] and the inequality (47). This contradiction implies that the adoption level

Nt has to be increasing in µPt .

B2. Derivation of the User-base Volatility

First, we consider the case without token. Using Itô’s lemma, we can differentiate Equa-

tion (25) and then, by matching coefficients with Equation (29), derive µNt and σNt :

dNt = −g
(
uNTt

)
duNTt − 1

2
g′
(
uNTt

) 〈
duNTt , duNTt

〉
, (49)

where
〈
duNTt , duNTt

〉
is the quadratic variation of duNTt . Using Itô’s lemma, we differentiate

Equation (24)

duNTt = − 1

Nt

dNt +
1

2N2
t

〈dNt, dNt〉 −
1

At
dAt +

1

2A2
t

〈dAt, dAt〉

= −
(
µNt
Nt

−
(
σNt
)2

2N2
t

+ µA −
(
σA
)2

2

)
dt−

(
σNt
Nt

+ σA
)
dZA

t . (50)

Substituting this dynamics into Equation (49), we have

dNt =

[
g
(
uNTt

)(µNt
Nt

−
(
σNt
)2

2N2
t

+ µA −
(
σA
)2

2

)
− 1

2
g′
(
uNTt

)(σNt
Nt

+ σA
)2
]
dt

+ g
(
uNTt

)(σNt
Nt

+ σA
)
dZA

t , (51)

By matching coefficients on dZA
t with Equation (29), we can solve for σNt .
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Next, we consider the tokenized economy. Once tokens are introduced, Nt depends on the

expected token price appreciation µPt . which is also a univariate function of state variable

At because by Itô’s lemma, µPt is equal to
(
dPt/Pt
dAt/At

)
µA + 1

2
d2Pt/Pt
dA2

t /A
2
t

(
σA
)2

. In equilibrium, its

law of motion is given by a diffusion process

dµPt = µµ
P

t dt+ σµ
P

t dZA
t . (52)

Now, the dynamics of ut becomes

dut =− 1

Nt

dNt +
1

2N2
t

〈dNt, dNt〉 −
1

At
dAt +

1

2A2
t

〈dAt, dAt〉

−
(

1− α
α

)(
1

r − µPt

)
dµPt −

(
1− α
α

)(
1

2 (r − µPt )
2

)〈
dµPt , dµ

P
t

〉
(53)

Let σut denote the diffusion of ut. By collecting the coefficients on dZA
t in Equation (53), we

have

σut = −σ
N
t

Nt

− σA −
(

1− α
α

)(
σµ

P

t

r − µPt

)
, (54)

which, in comparison with Equation (50), contains an extra term that reflects the volatility

of expected token price change. Note that, similar to Equation (49), we have

dNt = −g (ut) dut −
1

2
g′ (ut) 〈dut, dut〉 , (55)

so the diffusion of Nt is −g (ut)σ
u
t . Matching it with the conjectured diffusion coefficient σNt

gives σNt .

B3. Proof of AFB < ANT

To prove this inequality, consider the agent whose type is uNT , i.e., the type whose flow

profit is equal to zero when At = ANT in the tokenless economy. Therefore, we have the

following

0 = NNTANT eu
NT

α

(
1− α
r

) 1−α
α

− φ < αANTS

(
1− α
r

) 1−α
α

− φ, (56)
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where we use

NNT eu
NT

=
[
1−G

(
uNT

)]
eu

NT

<

∫ U

uNT
eu

NT

dG (u) +

∫ uNT

U

eudG (u) (57)

<

∫ U

uNT
eudG (u) +

∫ uNT

U

eudG (u) ≡ S.

Recall that in the FB economy, we have

0 = αAFBS

(
1− α
r

) 1−α
α

− φ . (58)

By comparing the right expressions in the two preceding inequalities, we conclude ANT >

AFB.

Appendix C - Parameter Choices

We choose the model parameters under the physical measure so that the model generates

patterns that are broadly consistent with user adoption and token price dynamics.

We assume that capital markets are perfectly competitive. For simplicity, we price all

assets including tokens via the following stochastic discount factor (“SDF”):

dΛt

Λt

= −rdt− ηdẐΛ
t , (59)

where r is the risk-free rate and η is the market price of risk for ẐΛ
t under the physical

measure. Let ρ denote the correlation coefficient between the SDF shock and productivity

shock. With these assumptions, under the physical measure, At follows a GBM process,

where the drift coefficient, µ̂A, is equal to µA + ηρσA and the volatility coefficient is σA.

We use token price and blockchain user-base dynamics from July 2010 and April 2018.

We normalize one unit of time in the model to be one year. Since we fix the token supply at

M , the token price Pt completely drives the market capitalization (PtM). We map Pt to the

aggregate market capitalization of major cryptocurrencies.17 Since we study a representative

17We include all sixteen cryptocurrencies with complete market cap and active address information on bit-
infocharts.com: AUR (Auroracoin), BCH (Bitcoin Cash), BLK (BlackCoin), BTC (Bitcoin), BTG (Bitcoin
Gold), DASH (Dashcoin), DOGE (DOGEcoin), ETC (Ethereum Classic), ETH (Ethereum), FTC (Feath-
ercoin), LTC (Litecoin), NMC (Namecoin), NVC (Novacoin), PPC (Peercoin), RDD (Reddcoin), VTC
(Vertcoin). They represent more than 2/3 of the entire crypto market.
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token economy, focusing on the aggregate market averages out idiosyncratic movements due

to specificalities of token protocols.

We collect the number of active user addresses for these cryptocurrencies and map the

aggregate number to Nt. We map the data to early stage of adoption in the model (i.e.,

Nt ≤ 0.5). We normalize the maximum number of active addresses (in December 2017) to

Nt = 0.5 and scale the number of addresses in other months by that of December 2017. For

each month, we also need a value of ln (At). Since we cannot observe the platform quality, we

assign December 2017 the value of ln (At) in our model that corresponds to Nt = 0.5. With

December 2017 as a reference point, we calculate the values of ln (At) for other months by

applying forward and backward the expected growth rate of At under the physical measure.

As a result, we focus on the stage of adoption, i.e., Nt ∈ [N, 0.5], where N = 0.0001.

Next, we choose parameter values such that the model generates data patterns in Fig-

ures 3 and 5. We set the annual risk-free rate, r, to 5% and choose µA = 2% < r to satisfy

the no-arbitage restriction. As we have previously discussed, we interpret At as a process

that broadly captures technological advances, regulatory changes, and the variety of activ-

ities feasible on the platform, all of which suggest a fast and volatile growth of At. This

consideration motivates us to choose σA = 200%.

As shown in Figure 6, the model does generate a close link between the technology

volatility and that of token returns, likely to due the fact that we focus on fundamental

aspects of adoption and valuation while do not fully capture the behavioral and, in general,

speculative factors in the model. That said, our choice of σA = 200% leads to a token return

volatility that is close to the median cryptocurrency’s return volatility in Hu, Parlour, and

Rajan (2018). They document that the median cryptocurrency’s daily return volatility is

14.6%, which is annualized to 232%.

This choice of σA = 200% gives us both a high volatility for At but also much of the

growth for At under the physical measure, as the physical-measure drift of At is µ̂A =

µA + ηρσA (Girsanov’s theorem). To match the growth of Nt in the data, we set ηρ = 1,

so that µ̂A = 202% using the preceding equation. As a result, the user base Nt grows from

N = 0.0001 to 0.5 during the eight-year period of our data sample and the growth rate

for the model-implied Nt matches that in data. One way to generate ηρ = 1 is to set η to

1.5, which is roughly the Sharpe ratio of ex-post efficient portfolio in the U.S. stock market

(combining various factors) and ρ to 0.67, a sensible choice of betas for the technology sector

(Pástor and Veronesi, 2009).

By no arbitrage, the drift of At, µ
A, is smaller than r under the risk-neutral measure,
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because after full adoption, µPt = µA as implied by the boundary condition. Therefore, for

the model to generate the high growth of user base in data, we need the drift of At to be

high under the physical measure, which requires, first, a high volatility of At and, second,

a high enough ηρ. Setting ρ to 0.67 seems at odd with the existing studies on the returns

of cryptocurrencies that show their correlations with the returns of traditional assets and

macroeconomic factors are low (Hu, Parlour, and Rajan, 2018; Liu and Tsyvinski, 2018).

However, we argue that in our model, dZA
t captures the shocks to the underlying technology

or platform quality instead of direct return shocks. Moreover, the returns of cryptocurrencies

can be driven by factors outside of our model, and such factors can add noise orthogonal to

the SDF and reduce the correlation between cryptocurrency returns and the SDF.

We use the normalized distribution for ui by truncating the Normal density function

g (u) =
√

1
2πθ2

e−
u2

2θ2 within six-sigma on both sides. As the dispersion of ui determines how

responsive Nt is to the change of At, we match the curvature of Nt with respect to At by

setting θ = 10/
√

2, which implies that thee cross-section variance of ui is 50.

We set α to 0.3 so that the senstivity of ln(Pt) with repect to Nt matches the data in the

region where Nt ∈ [N, 0.5] as we show in Figure 5.

The remaining parameters quantitatively do not affect much the equilibrium dynamics.

We set the participation cost, φ, to one and normalize M to 10 billion. As our model

features monetary neutrality, Pt is halved whenM is doubled but importantly the equilibrium

dynamics is invariant.
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